Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2010

Sammendrag

In order to support functional genomics research in octoploid (Fragaria x ananassa Duch.) and diploid (F. vesca) strawberry, a customized Fragaria microarray chip was developed as a joint collaboration between Graminor Breeding Ltd. and NTNU. F. vesca cDNA sequences were provided by The Center for Genomics and Bioinformatics, Indiana University (an assembly of >3 million reads from GS-FLX Titanium - Roche/454 Life Sciences sequencing), and about 59,000 publicly available Fragaria EST sequences were uploaded from NCBI. In addition, ~190 Mb of preliminary draft genome sequences from F. vesca were provided by the Strawberry Genome Sequencing Consortium (courtesy to V. Shulaev). cDNAs used as templates for probe design were validated by BlastN against the F. vesca draft genome excluding cDNAs of microbial origin. Genes not represented in the cDNA collection were identified by screening F. vesca draft genome against protein sequences from Arabidopsis thaliana, Vitis vinifera, Ricinus communis and Populus trichocarpa. Exon sequences from genes not found in the cDNAs were included. In total, 43723 unique 60-mer probes were designed and the Agilent eARRAY tool was used to produce a 4x44k format microarray chip. Fragaria chip applicability and feasibility for transcriptional profiling was investigated using either abiotic (low temperature) or biotic (pathogenic fungi) stress treatment. Microarray data will be subsequently integrated with other omics data to address gene-regulatory networks and biological functions. Cold acclimation experiments were focused on short- and long-term effects in meristematic tissue, and revealed the up-regulation of ~100 cold-responsive genes (transcription factors, dehydrins, enzymes), and transcripts involved in starch breakdown and raffinose biosynthesis. Beside central metabolism, secondary metabolism was also strongly modulated as seen by changes in the expression of flavonoid biosynthesis-related genes. Time-course studies of transcriptional responses in F. vesca accessions showing contrasting resistance toward the pathogen Phytophthora cactorum are in progress, and will be presented in-depth.

Sammendrag

Estimates of ascospore maturity generated by models developed for Venturia pirina in Victoria, Australia (V-NV, V-SV), Oregon, USA (S), or for Venturia inaequalis in New Hampshire, USA (NH-1 and NH-2) were compared to observed ascospore release of V. pirina in 21 site/yr combinations. When plotted against degree-days, the lag phase and slope of all model estimates differed from observed release. The S model and V-SV model fit well with the data from Southern Victoria, while the data from Norway, Belgium and most years from Northern Victoria show a lag phase in the beginning of the season that was not present in the two models. In particular, data from the high-rainfall region of southern Victoria showed more variation between years than the other sites. Identifying the precise biofix (bud break) to initiate degree-day accumulation for the NH-2 model was problematic at both Australian sites, as regions with warm winters and minimal chilling exhibit protracted bud break. Linear regressions generated similar R2 values for the various models in many cases, but where differences were noted they more often favored the most recent model developed for V. inaequalis (NH-2). The NH-2 model also provided the most accurate estimates of 95% ascospore depletion (a key event in many disease management programs) for Norway, Belgium, and the higher rainfall areas of southern Victoria. Although developed for use in management of apple scab, the NH-2 model appears a reasonably accurate tool for predicting the release of ascospores by the pear scab pathogen, in particular in regions with moderate rainfall and colder winters.

Sammendrag

The production of hydrogen in green algae is catalyzed by FeFe- hydrogenases, which have high conversion efficiency and high oxygen sensitivity. Most green algae analyzed to date where hydrogenase genes are detected, have been shown to contain two distinct hydrogenases. However, very little is known about which functions the two different enzymes represent. There are also many unknowns within the mechanisms behind hydrogen production as to the roles hydrogenases play under different conditions, and consequently also about the potential for optimization of a hydrogen production process which could be found in this respect. The presented study focuses on the possibility for presence of more than two hydrogenases in a single green alga. A large number of degenerate primers were designed and used to produce 3"-RACE products, which in turn were used to design gene specific primers used for PCR and 5"-RACE reactions. The sequences were aligned with known algal hydrogenases to identify products which had homology to these. Products where homology was identified were then explored further. A high number of clones from each band were sequenced to identify products with similar lengths which would not show up as separate bands on a gel. Sequences found to have homology with algal hydrogenases were translated into putative amino acid sequences and analyzed further to obtain detailed information about the presence of specific amino acids with known functions in the enzyme. This information was used to evaluate the likelihood of these transcripts coding for true hydrogenases, versus hydrogenase-like or narf-like proteins. Conclusion: Evidence showing that Chlamydomonas noctigama is able to transcribe three genes which share a significant number of characteristics with other known algal FeFe-hydrogenases is presented . The three genes have been annotated hydA1, hydA2 and hydA3.

Til dokument

Sammendrag

Habitat specificity analysis provides a tool for partitioning landscape species diversity on landscape elements by separating patches with many rare specialist species from patches with the same number of species, all of which are common generalists and thus provide information of relevance to conservation goals at regional and national levels. Our analyses were based upon species data from 2201 patch elements in SE Norwegian modern agricultural landscapes. The context used for measuring habitat specificity strongly influences the results. In general the gamma diversity contribution and core habitat specificity calculated from the patch data set were correlated. High values for both measures were observed for woodland, pastures and road verges whereas midfield islets and boundary transitional types were ranked low, as opposed to findings in traditional, extensively managed agricultural landscapes. This is due to our study area representing intensively used agricultural landscape elements holding a more trivial species composition, in addition to ruderals being favoured by fertility and disturbance, a finding also being supported by the semi-natural affiliation index. Results obtained by use of checklist data from the same study area diverged from patch data. Caution is needed in interpretation of habitat specificity results obtained from checklist data, because modern agricultural landscapes contain several land types which are seldom surveyed by botanists, thus being under-represented in the data set. We propose the use of core habitat specificity and gamma diversity contribution in parallel to obtain a value neutral diversity assessment that addresses patch uniqueness and other properties of conservation interests.

Sammendrag

Background and Aims The carbon balance of vegetation is dominated by the two large fluxes of photosynthesis (P) and respiration (R). Mechanistic models have attempted to simulate the two fluxes separately, each with their own set of internal and external controls. This has led to model predictions where environmental change causes R to exceed P, with consequent dieback of vegetation. However, empirical evidence suggests that the R : P ratio is constrained to a narrow range of about 0·4-0·5. Physiological explanations for the narrow range are not conclusive. The aim of this work is to introduce a novel perspective by theoretical study of the quantitative relationship between the four carbon fluxes of P, R, growth and storage (or its inverse, remobilization). Methods Starting from the law of conservation of mass - in this case carbon - equations are derived for the relative magnitudes of all carbon fluxes, which depend on only two parameters: the R : P ratio and the relative rate of storage of carbon in remobilizable reserves. The equations are used to explain observed flux ratios and to analyse incomplete data sets of carbon fluxes. Key Results The storage rate is shown to be a freely varying parameter, whereas R : P is narrowly constrained. This explains the constancy of the ratio reported in the literature. With the information thus gained, a data set of R and P in grassland was analysed, and flux estimates could be derived for the periods after cuts in which plant growth is dominated by remobilization before photosynthesis takes over. Conclusions It is concluded that the relative magnitudes of photosynthesis, respiration, growth and substrate storage are indeed tightly constrained, but because of mass conservation rather than for physiological reasons. This facilitates analysis of incomplete data sets. Mechanistic models, as the embodiment of physiological mechanisms, need to show consistency with the constraints.

Til dokument

Sammendrag

Traditional wood preservatives based on biocides are effective against wood-deteriorating organisms because of their toxicity. By contrast, modified woods are non-toxic by definition. To investigate the efficiency of various wood modifications, quantitative real-time polymerase chain reaction (qPCR) was used to profile the DNA amounts of the white-rot fungus Trametes versicolor (L.) [Lloyd strain CTB 863 A] during an 8-week-long growth period in treated Pinus sylvestris (L.) sapwood. The studied wood was modified by acetylation, furfurylation, and thermal treatment. The traditional wood preservatives bis-(N-cyclohexyldiazeniumdioxy)-copper (Cu-HDO) and chromated copper arsenate (CCA) were used as references, whereas untreated P. sylvestris (L.) sapwood served as a control. The maximum levels of fungal DNA in native wood occurred at the end of the experiment. For all wood treatments, the maximum fungal DNA level was recorded after an incubation period of 2 weeks, followed by a decline until the end of the trial. For the preservative-treated woods, Cu-HDO showed the lowest level of fungal DNA throughout the experiment, indicating that exploratory hyphal growth is limited owing to the phytotoxicity of the treatment. The other treatments did not inhibit the exploratory hyphal growth phase. We conclude that qPCR studies of hyphal growth patterns within wood should provide a powerful tool for evaluating and further optimizing new wood protection systems.

Sammendrag

Cleistothecia on leaves of deciduous perennials are often dispersed before leaf fall to other substrates. In contrast, strawberry leaves remain attached during winter, and cleistothecia of Podosphaera macularis remained attached to these leaves. Release of overwintered ascospores was coincident with renewed plant growth, and pathogenicity of ascospores was confirmed. Upper and lower surfaces of emergent leaves were similarly susceptible, but upper surfaces were obscured by folding in emergent leaves. Emergent leaves exposed to airborne inoculum developed severe infection of the lower surface, but not the obscured upper surface. Emergent leaves acquired ontogenic resistance during unfolding, and the upper leaf surface thereby escaped infection. We found no evidence that the pathogen survives winters in New York, USA or Norway within crown tissue. Plants stripped of infected leaves remained mildew-free when forced after overwintering, while mildew colonies commonly developed on emergent leaves of plants not stripped of mildewed leaves. Unsprayed plots established using mildew-free plants either remained asymptomatic or developed only traces of powdery mildew during one growing season, even when located within 100 to 150 meters of severely diseased plots. In summary, our results suggest the following: (i) sanitation, use of disease-free plants, and eradicative treatments could contribute greatly to management of strawberry powdery mildew; (ii) cleistothecia represent a functional source of primary inoculum; and (iii) the common observation of higher mildew severity on lower leaf surfaces may reflect escape of the upper epidermis due to the combined effect of leaf folding and rapid acquisition of ontogenic resistance.

Sammendrag

Colletotrichum acutatum causes bitter rot (often named anthracnose) in cherry and apple. It is the most important fruit decay in sour cherry in Norway and may give severe losses also in sweet cherry and apple. We have found the fungus in all fruit and berry crops grown commercially in the country and on many ornamentals and a few weeds. Single spore isolates frequently developed the ascigerous stage of the fungus (Glomerella acutata) in culture, but it was not detected on apple or cherry plant material. If still attached to the tree, fruits and fruit stalks of sour cherry infected the previous year produced conidial inoculum throughout the entire following season. Also newly infected sour cherry flowers produced conidial inoculum until harvest. Up to 80% of the fruit spurs on sweet cherry had buds infected with C. acutatum in spring. Apple buds also contained the fungus, but to a much lower extent. More than 90% of the sweet cherry leaves could be infected with C. acutatum around harvest in heavily infected orchards. Symptoms on leaves never appeared in the orchards. We also found such asymptomatic leaf infections in apples. Most of the inoculum seemed to be present on the fruit trees themselves. However, initial inoculum in newly established, disease free plantings may be introduced from older fruit trees, ornamentals and weeds in or in close vicinity to the orchards.

Til dokument

Sammendrag

Active gibberellin (GA(1)) is an important mediator of thermoperiodic growth in pea. Plants grown under lower day than night temperature (negative DIF) elongate less and have reduced levels of GA(1) compared with plants grown at higher day than night temperature (positive DIF). By comparing the wild type (WT) and the elongated DELLA mutant la cry(s), this study has examined the effect of impaired GA signalling on thermoperiodic growth, photosynthesis, and respiration in pea. In the WT a negative DIF treatment reduced stem mass ratio and increased both root mass ratio and leaf mass ratio (dry weight of specific tissue related to total plant dry weight). Leaf, root and stem mass ratios of la cry(s) were not affected by DIF. Under negative DIF, specific leaf area (projected leaf area per unit leaf dry mass), biomass, and chlorophyll content of WT and la cry(s) plants were reduced. Young, expanding leaves of plants grown under negative DIF had reduced leaf area-based photosynthetic capacity. However, the highest photosynthetic electron transport rate was found in fully expanded leaves of WT plants grown under negative DIF. Negative DIF increased night respiration and was similar for both genotypes. It is concluded that GA signalling is not a major determinant of leaf area-based photosynthesis or respiration and that reduced dry weight of plants grown under negative DIF is caused by a GA-mediated reduction of photosynthetic stem and leaf tissue, reduced photosynthesis of young, expanding leaves, and reduced growth caused by low temperature in the photoperiod.

Til dokument

Sammendrag

Active gibberellin (GA1) is an important mediator of thermoperiodic growth in pea. Plants grown under lower day than night temperature (negative DIF) elongate less and have reduced levels of GA1 compared with plants grown at higher day than night temperature (positive DIF). By comparing the wild type (WT) and the elongated DELLA mutant la crys, this study has examined the effect of impaired GA signalling on thermoperiodic growth, photosynthesis, and respiration in pea. In the WT a negative DIF treatment reduced stem mass ratio and increased both root mass ratio and leaf mass ratio (dry weight of specific tissue related to total plant dry weight). Leaf, root and stem mass ratios of la crys were not affected by DIF. Under negative DIF, specific leaf area (projected leaf area per unit leaf dry mass), biomass, and chlorophyll content of WT and la crys plants were reduced. Young, expanding leaves of plants grown under negative DIF had reduced leaf area-based photosynthetic capacity. However, the highest photosynthetic electron transport rate was found in fully expanded leaves of WT plants grown under negative DIF. Negative DIF increased night respiration and was similar for both genotypes. It is concluded that GA signalling is not a major 25 determinant of leaf area-based photosynthesis or respiration and that reduced dry weight of plants grown under negative DIF is caused by a GA-mediated reduction of photosynthetic stem and leaf tissue, reduced photosynthesis of young, expanding leaves, and reduced growth caused by low temperature in the photoperiod.