Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

Key message Large-scale forest resource maps based on national forest inventory (NFI) data and airborne laser scanning may facilitate synergies between NFIs and forest management inventories (FMIs). A comparison of models used in such a NFI-based map and a FMI indicate that NFI-based maps can directly be used in FMIs to estimate timber volume of mature spruce forests. Context Traditionally, FMIs and NFIs have been separate activities. The increasing availability of detailed NFI-based forest resource maps provides the possibility to eliminate or reduce the need of field sample plot measurements in FMIs if their accuracy is similar. Aims We aim to (1) compare a timber volume model used in a NFI-based map and models used in a FMI, and (2) evaluate utilizing additional local sample plots in the model of the NFI-based map. Methods Accuracies of timber volume estimates using models from an existing NFI-based map and a FMI were compared at plot and stand level. Results Estimates from the NFI-based map were similar to or more accurate than the FMI. The addition of local plots to the modeling data did not clearly improve the model of the NFI-based map. Conclusion The comparison indicates that NFI-based maps can directly be used in FMIs for timber volume estimation in mature spruce stands, leading to potentially large cost savings.

Til dokument

Sammendrag

While tire wear and tear is known to be a major source of microplastics in the environment, its monitoring is still hampered by the lack of analytical methods able to provide concentrations in environmental matrices. Tirewear particles (TWP) present in road runoff enter the drainage system through gully pots, built to prevent sediment deposition in the drainage system, and eventually protect downstream receiving waters. The aim of this study was to detect and quantify TWP in gully pot sediments, by using a novel method combining Simultaneous Thermal Analysis (STA), Fourier Transform Infrared (FTIR) spectroscopy and Parallel Factor Analysis (PARAFAC). The method was applied to samples from five sites in Southern Norway, characterized by different traffic densities and patterns. The method involved no sample pretreatment, the whole sediment samplewas submitted to thermal decomposition in STA, and gases generated during pyrolysis were continuously transferred to FTIR. The FTIR data were arranged in a trilinearmulti-way dataset (samples × IR spectra wavenumber × pyrolysis temperature) and then analyzed by PARAFAC. The results showed that TWP concentrations in gully pots varied greatly across sites, ranging frombelow1 mgTWP/g sediment in streetswith the lowest traffic densities, to 150 mgTWP/g sediment at themost trafficked study site. The results also indicated that other traffic conditions, such as driving patterns influence TWP concentrations. Finally, by enabling quantification of TWP in gully pot sediments, the approach presented here supports environmental monitoring of TWP and safe disposal of gully pot sediments, which is critical for environmental pollution management.