Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Til dokument

Sammendrag

Spatially explicit knowledge of recent and past soil organic carbon (SOC) stocks in forests will improve our understanding of the effect of human- and non-human-induced changes on forest C fluxes. For SOC accounting, a minimum detectable difference must be defined in order to adequately determine temporal changes and spatial differences in SOC. This requires sufficiently detailed data to predict SOC stocks at appropriate scales within the required accuracy so that only significant changes are accounted for. When designing sampling campaigns, taking into account factors influencing SOC spatial and temporal distribution (such as soil type, topography, climate and vegetation) are needed to optimise sampling depths and numbers of samples, thereby ensuring that samples accurately reflect the distribution of SOC at a site. Furthermore, the appropriate scales related to the research question need to be defined: profile, plot, forests, catchment, national or wider. Scaling up SOC stocks from point sample to landscape unit is challenging, and thus requires reliable baseline data. Knowledge of the associated uncertainties related to SOC measures at each particular scale and how to reduce them is crucial for assessing SOC stocks with the highest possible accuracy at each scale. This review identifies where potential sources of errors and uncertainties related to forest SOC stock estimation occur at five different scales—sample, profile, plot, landscape/regional and European. Recommendations are also provided on how to reduce forest SOC uncertainties and increase efficiency of SOC assessment at each scale.

Til dokument

Sammendrag

Accurate estimation of winter wheat frost kill in cold-temperate agricultural regions is limited by lack of data on soil temperature at wheat crown depth, which determines winter survival. We compared the ability of four models of differing complexity to predict observed soil temperature at 2 cm depth during two winter seasons (2013-14 and 2014-15) at Ultuna, Sweden, and at 1 cm depth at Ilseng and Ås, Norway. Predicted and observed soil temperature at 2 cm depth was then used in FROSTOL model simulations of the frost tolerance of winter wheat at Ultuna. Compared with the observed soil temperature at 2 cm depth, soil temperature was better predicted by detailed models than simpler models for both seasons at Ultuna. The LT50 (temperature at which 50 % of plants die) predictions from FROSTOL model simulations using input from the most detailed soil temperature model agreed better with LT50 FROSTOL outputs from observed soil temperature than what LT50 FROSTOL predictions using temperature from simpler models did. These results highlight the need for simpler temperature prediction tools to be further improved when used to evaluate winter wheat frost kill.

Sammendrag

The prevalence of Fusarium dry rot in potatoes produced in Norway was investigated in a survey for three consecutive years in the period 2010 to 2012. A total of 238 samples (comprising 23,800 tubers) were collected, representing different cultivars and production regions in Norway. Fusarium spp. were detected in 47% of the samples, with one to three species per sample. In total, 718 isolates of Fusarium spp. were recovered and identified to seven species. The most commonly isolated species was Fusarium coeruleum, comprising 59.6% of the total Fusarium isolates and found in 17.2% of the collected samples, followed by Fusarium avenaceum (27.2% of the isolates and found in 27.7% of the samples). Fusarium sambucinum was the third most prevalent species (6.4% in 8.8% of the samples) and Fusarium culmorum the fourth (5.2% in 6.3% of the samples). Less prevalent species included Fusarium cerealis, Fusarium graminearum, and Fusarium equiseti (<1% in 0.4 to 1.3% of the samples). F. coeruleum was the most prevalent species in northern and southwestern Norway, whereas F. avenaceum was dominating in eastern Norway. The potato cultivars Berber and Rutt were susceptible to all Fusarium spp. A new TaqMan real-time PCR assay specific for F. coeruleum was developed, which successfully identified Norwegian isolates. This and other previously developed real-time PCR assays targeting different Fusarium species were evaluated for their ability to detect latent infections in potatoes at harvest. This study provides new information on the current occurrence of different Fusarium species causing Fusarium dry rot in potatoes in Europe including areas far into the arctic in the north of Norway.

Sammendrag

Terroir characteristics of local food products are sometimes a result of ecosystem services from special nature types as mountain semi-natural grasslands. Several environmental conditions such as climate, topography, location above sea level, geology and soil are important factors defining frames for different vegetation types and available fodder resources in mountain areas. In addition, cultural traditions and a great variety in human land use systems are important determinants for grassland biodiversity. Results from several Norwegian studies show that species rich mountain pastures improve local food quality.