Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

BACKGROUND:The predicted and ongoing climate warming can have far-reaching effects on plant growth and life cycle. Therefore, there is need for simple and convenient methods for analysis and monitoring of consequences of the ongoing warming. OBJECTIVE:To demonstrate the usefulness of so-called climate-photothermographs for studying the consequences of the ongoing warming for production of berry crops. METHODS:Local photothermal climates can be expressed by so-called climate-photothermographs, which show the relationship between temperature and daylength for each month of the year in a rectangular coordinate diagram. When superimposing critical response curves for plant development processes on top of such a diagram, the limitations of the given climate for fulfilment of the processes can be readily assessed. RESULTS:Consequences of 2°C warming for critical development processes such as transition to flowering and breaking of winter dormancy in the berry crops raspberry, black currant and strawberry were clearly exposed by the technique. The locations Geisenheim, Germany and Ås, Norway were used as examples. Inadequate winter chill was identified as the most limiting factor for these crops. CONCLUSIONS:We conclude that the technique is an efficient and convenient tool for monitoring the consequences of climate warming for berry crops.

Til dokument

Sammendrag

This review compiles various literature studies on the environmental impacts associated with the processes of thermal modification of wood. In wood preservation field, the wood modification by heat is considered as an ecofriendly process due to the absence of any additional chemicals. However, it is challenging to find proper scientific and industrial data that support this aspect. There are still very few complete studies on the life cycle assessment (LCA) and even less studies on the environmental impacts related to wood heat treatment processes whether on a laboratory or on an industrial scales. This comprehensive review on environmental impact assessment emphasizes environmental categories such as dwindling of natural resources, cumulative energy intake, gaseous, solid and liquid emissions occurred by the thermal-treated wood industry. All literature-based data were collected for every single step of the process of wood thermal modification like resources, treatment process, transport and distribution, uses and end of life of treated wood products.