Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.

Til dokument

Sammendrag

Sprinkler irrigation systems can release ascospores of Venturia inaequalis, the cause of apple scab, from infected leaves on the ground under conditions unsuitable for infection, and thus reducing the primary inoculum. Under-canopy irrigation was carried out for two hours in the middle of the day over overwintered apple leaves heavily infected with scab, either in a wind-protected enclosure or in a wind-exposed orchard. Ascospores were captured with rotating-arm spore traps at heights ranging from 0.3 m to 3.0 m above the ground. Ascospores dispersed above the irrigated layer and were detected at all heights above the sprinklers. Wind played a critical role in spore transport, evident from the set-up where wind interference was minimised by a wind fence, resulting in higher airborne spore numbers across all measured heights compared with the orchard exposed to unrestricted wind conditions. Furthermore, vertical temperature gradients significantly correlated with spore distributions, particularly where negative gradients at heights between 0.3 m and 0.05 m and positive gradients at heights between 1.0 m and 0.3 m led to spore retention within the irrigated zone. The findings highlight that ascospores, dispersed above the irrigated layers, could settle on susceptible tissues. It thus becomes imperative to ensure a rain-free period of at least 24 h post-irrigation and, if a rainfall shortly occurs after irrigation, the application of curative fungicides becomes essential following unexpected rain. Reliable weather forecasts are therefore crucial in determining the effectiveness of under-canopy irrigation to reduce apple scab incidence.