Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

The biosynthesis of polyphenolic compounds in cabbage waste, outer green leaves of white head cabbage (Brassica oleracea L. var. capitata subvar. alba), was stimulated by postharvest irradiation with UVB lamps or sunlight. Both treatments boosted the content of kaempferol and quercetin glycosides, especially in the basal leaf zone, as determined by the HPLC analysis of leaf extracts and by a non-destructive optical sensor. The destructive analysis of samples irradiated by the sun for 6 days at the end of October 2015 in Skierniewice (Poland) showed an increase of leaf flavonols by 82% with respect to controls. The treatment by a broadband UVB fluorescent lamp, with irradiance of 0.38 W m−2 in the 290–315 nm range (and 0.59 W m−2 in the UVA region) for 12 h per day at 17 °C along with a white light of about 20 μmol m−2 s−1, produced a flavonols increase of 58% with respect to controls. The kinetics of flavonols accumulation in response to the photochemical treatments was monitored with the FLAV non-destructive index. The initial FLAV rate under the sun was proportional to the daily radiation doses with a better correlation for the sun global irradiance (R2 = 0.973), followed by the UVA (R2 = 0.965) and UVB (R2 = 0.899) irradiance. The sunlight turned out to be more efficient than the UVB lamp in increasing the flavonols level of waste leaves, because of a significant role played by UVA and visible solar radiation in the regulation of the flavonoid accumulation in cabbage. The FLAV index increase induced on the adaxial leaf side was accompanied by a lower but still significant FLAV increase on the unirradiated abaxial side, likely due to a systemic signaling by mean of the long-distance movement of macromolecules. Our present investigation provides useful data for the optimization of postharvest photochemical protocols of cabbage waste valorization. It can represent a novel and alternative tool of vegetable waste management for the recovery of beneficial phytochemicals.

Sammendrag

Rapporten inneholder skjøtselsplan for verdifull slåttemark på Elvadalen i Verran kommune. Lokaliteten innehar verdi A som følge av arealstørrelse og artsmangfold. Det er avgjørende med en videreføring av tradisjonell ekstensiv skjøtsel for å kunne opprettholde verdien på slåttemarka.

Til dokument

Sammendrag

Large population increases of Arctic-breeding waterfowls over recent decades have intensified the conflict with agricultural interests in both Eurasia and North America. In the spring-staging region Vesterålen in sub-Arctic Norway, sheep, dairy and meat farmers have reported reduced agricultural grassland yields due to pink-footed geese Anser brachyrhynchus and barnacle geese Branta leucopsis that rest and forage in the region for 3–4 weeks in spring on their way to their breeding grounds on Svalbard. Here, we report from an experimental exclosure design where goose access to plots at three grassland fields in Vesterålen was prevented. The experiment was conducted over 3 years between 2012 and 2014. Goose abundance varied greatly between fields and years as a function of variable spring weather and forage quantity, facilitating evaluation of longer-term impacts under contrasting grazing intensities. First and second harvest yields across fields and years were 20% and 19% higher in exclosures than in plots open for grazing, while total yields (sum of first and second harvests) were on average 27% higher. Within-year effects on harvest yields varied substantially, primarily due to highly contrasting sward development during the spring-staging periods. Cool weather (2012) led to slow sward development and little or no effects on harvest yields, warmer weather (2013) resulted in generally large effects, while variable weather (2014) led to treatment effects varying across fields, with one field experiencing 61% higher yields in exclosures while there were no significant impacts on first-harvest yields at the two other fields. Goose grazing did not increase dry weight-based proportions of weeds. Overall, the farmers' reports on yield-loss due to goose grazing were confirmed, although impacts varied substantially between years. A novel finding is that second-harvest yields were also reduced. For the most affected farmers, it is unlikely that the current subsidy scheme is sufficient to cover all the their losses.

Til dokument

Sammendrag

Berries represent one of the most important and high-valued group of modern-day health-beneficial “superfoods” whose dietary consumption has been recognized to be beneficial for human health for a long time. In addition to being delicious, berries are rich in nutrients, vitamins, and several bioactive compounds, including carotenoids, flavonoids, phenolic acids, and hydrolysable tannins. However, due to their high value, berries and berry-based products are often subject to fraudulent adulteration, commonly for economical gain, but also unintentionally due to misidentification of species. Deliberate adulteration often comprises the substitution of high-value berries with lower value counterparts and mislabeling of product contents. As adulteration is deceptive toward customers and presents a risk for public health, food authentication through different methods is applied as a countermeasure. Although many authentication methods have been developed in terms of fast, sensitive, reliable, and low-cost analysis and have been applied in the authentication of a myriad of food products and species, their application on berries and berry-based products is still limited. The present review provides an overview of the development and application of analytical chemistry methods, such as isotope ratio analysis, liquid and gas chromatography, spectroscopy, as well as DNA-based methods and electronic sensors, for the authentication of berries and berry-based food products. We provide an overview of the earlier use and recent advances of these methods, as well as discuss the advances and drawbacks related to their application.