Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2010

Sammendrag

The aim of this study was to validate and compare single-tree detection algorithms under different forest conditions. Field data and corresponding airborne laser scanning (ALS) data were acquired from boreal forests in Norway and Sweden, coniferous and broadleaved forests in Germany, and pulpwood plantations in Brazil. The data represented a variety of forest types from pure Eucalyptus stands with known ages and planting densities to conifer-dominated Scandinavian forests and more complex deciduous canopies in Central Europe. ALS data were acquired using different sensors with pulse densities varying between the data sets. Field data in varying extent were associated with each ALS data set for training purposes. Treetop positions were extracted using altogether six different algorithms developed in Finland, Germany, Norway and Sweden, and the accuracy of tree detection and height estimation was assessed. Furthermore, the weaknesses and strengths of the methods under different forest conditions were analyzed. The results showed that forest structure and density strongly affected the performance of all algorithms. The differences in performance between methods were more pronounced for tree detection than for height estimation. The algorithms showed a slightly better performance in the conditions for which they were developed, while some could be adapted by different parameterization according to training with local data. The results of this study may help guiding the choice of method under different conditions and may be of great value for future refinement of the single-tree detection algorithms.

Sammendrag

In this study, the efficiency of a small multi-tree felling head, mounted on a farm tractor with a timber trailer was studied, when harvesting small trees for energy in thinnings. Both separate loading and direct loading of the felled trees was studied. Time studies were carried out in a mixed stand of Norway spruce (Picea abies (L.) Karst) and birch (Betula pubescens Ehrh.). The time consumption of the work elements in the different work methods was formulated by regression analysis, where the independent variables were tree size and degree of accumulation. The average size of the harvested trees was 0.035 m3. The time consumption for the harvesting and loading were similar for the two studied methods, 20 minutes per m3 at a tree size of 0.035 m3, but the two methods showed different characteristics for different tree sizes and level of accumulation. The direct loading method had the highest productivity when more than 0.1 m3 were collected in the felling cycle, whereas the separate loading method had the highest productivity when less than 0.05 m3 were collected in the felling cycle. The total effective time consumption for harvesting and forwarding the biomass 300 meters to roadside landing was 27 minutes per m3. The efficiency of the initial felling and collecting of the small trees was the main challenge. Both the harvesting technique and harvesting technology needs further development to provide a feasible production chain for woodfuel from energy thinning.

Sammendrag

Mange juletredyrkarar har i dei seinare åra gjort gode erfaringar med fjelledelgran (Abies lasiocarpa), og fleire ønskjer å prøve treslaget. Riktig proveniensval og god kunnskap om lokalklimaet på dyrkingsstaden er viktig for å kunne lykkast med innførte treslag. Ei forsøksserie med frømateriale frå USA og Canada, viser at fjelledelgran frå delar av det nordlege og vestlege utbreiingsområdet er mest aktuell for dyrking i låglandet i Sør-Noreg.