Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Til dokument

Sammendrag

Schistidium marginale is described as a new species from several European states including Austria, Georgia, Italy, Macedonia, Spain, Switzerland and Turkey. The species is fully illustrated, its affinities are discussed in detail and its current distribution is mapped. The new species is closely related to S. confertum and S. echinatum from which it differs in having a coarser and thicker costa which is 3–4-stratose in mid-leaf and 4-layered at the base; strongly thickened, 2–4-stratose and (1–)2–5-seriate leaf margins; and a thicker and stiffer leaf hair-point. It clearly belongs to Schistidium Bruch & Schimp. sect. Conferta (Vilh.) Ochyra on account of the distinct 3–6(–7)-seriate basal marginal border of quadrate to short-rectangular, often subhyaline cells with distinctly thickened transverse walls.

Til dokument

Sammendrag

The cyanomorph and photosymbiodemes are here reported for the first time for Ricasolia virens (With.) H.H. Blom & Tønsberg comb. nov. (≡ Lobaria virens (With.) J.R. Laundon). The cyanomorph of R. virens is dendriscocauloid. The observed early developmental stages involve (1) a free-living cyanomorph and (2) a photosymbiodeme composed of the cyanomorph supporting small, foliose, chloromorphic lobes. Whereas the chloromorph continues to grow, the cyanomorph decays and disappears leading to the final stage (3), the free-living chloromorph. Secondary cyanomorphs emerging from the chloromorph are not known.

Til dokument

Sammendrag

Spatially explicit knowledge of recent and past soil organic carbon (SOC) stocks in forests will improve our understanding of the effect of human- and non-human-induced changes on forest C fluxes. For SOC accounting, a minimum detectable difference must be defined in order to adequately determine temporal changes and spatial differences in SOC. This requires sufficiently detailed data to predict SOC stocks at appropriate scales within the required accuracy so that only significant changes are accounted for. When designing sampling campaigns, taking into account factors influencing SOC spatial and temporal distribution (such as soil type, topography, climate and vegetation) are needed to optimise sampling depths and numbers of samples, thereby ensuring that samples accurately reflect the distribution of SOC at a site. Furthermore, the appropriate scales related to the research question need to be defined: profile, plot, forests, catchment, national or wider. Scaling up SOC stocks from point sample to landscape unit is challenging, and thus requires reliable baseline data. Knowledge of the associated uncertainties related to SOC measures at each particular scale and how to reduce them is crucial for assessing SOC stocks with the highest possible accuracy at each scale. This review identifies where potential sources of errors and uncertainties related to forest SOC stock estimation occur at five different scales—sample, profile, plot, landscape/regional and European. Recommendations are also provided on how to reduce forest SOC uncertainties and increase efficiency of SOC assessment at each scale.

Sammendrag

App og webside basert på R Shiny for å gi en alminnelig og fleksibel tilgang til Landsskogtakseringens estimater. Språk: norsk og engelsk. Flere oppdateringer i 2016, 2017 og 2018. Online: https://landsskog.nibio.no/