Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
Through their ephemeral reproductive structures (fruiting bodies), ectomycorrhizal forest soil fungi provide a resource for a plethora of organisms. Thus, resolving what biotic and abiotic factors determine the occurrence and abundance of fruiting bodies is fundamental for understanding the dynamics of forest trophic networks. While the influence of abiotic factors such as moisture and temperature on fungal fruiting are relatively well established, little is known about how these processes interact with the evolutionary history of fungal species to determine when, where, and in which abundance fungal fruiting bodies will emerge. A specific knowledge gap relates to whether species' responses to their environment are phylogenetically structured. Here, we ask whether related fungal taxa respond similarly to climatic factors and forest habitat characteristics, and whether such correlated responses will affect the assembly of fungal fruiting communities. To resolve these questions, we fitted joint species distribution models combining data on the species composition and abundance of fungal fruiting bodies, environmental variation, and phylogenetic relationships among fungal taxa. Our results show that both site-level forest characteristics (dominant tree species and forest age) and climatic factors related to phenology (effective heat sum) greatly influence the occurrence and abundance of fruiting bodies. More importantly, while different fungal species responded unequally to their shared environment, there was a strong phylogenetic signal in their responses, so that related fungal species tended to fruit under similar environmental conditions. Thus, not only are fruiting bodies short-lived and patchily distributed, but the availability of similar resources will be further aggregated in time and space. These strong constraints on resource availability for fungus-associated taxa highlight the potential of fungus-based networks as a model system for studies on the ecology and evolution of resource–consumer relations in ephemeral systems of high spatiotemporal patchiness.
Sammendrag
Resource specialization and ecological speciation arising through host-associated genetic differentiation (HAD) are frequently invoked as an explanation for the high diversity of plant-feeding insects and other organisms with a parasitic lifestyle. While genetic studies have demonstrated numerous examples of HAD in insect herbivores, the rarity of comparative studies means that we still lack an understanding of how deterministic HAD is, and whether patterns of host shifts can be predicted over evolutionary timescales. We applied genome-wide single nucleotide polymorphism and mitochondrial DNA sequence data obtained through genome resequencing to define species limits and to compare host-plant use in population samples of leaf- and bud-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae) collected from seven shared willow (Salicaceae: Salix) host species. To infer the repeatability of long-term cophylogenetic patterns, we also contrasted the phylogenies of the two galler groups with each other as well as with the phylogeny of their Salix hosts estimated based on RADseq data. We found clear evidence for host specialization and HAD in both of the focal galler groups, but also that leaf gallers are more specialized to single host species compared with most bud gallers. In contrast to bud gallers, leaf gallers also exhibited statistically significant cophylogenetic signal with their Salix hosts. The observed discordant patterns of resource specialization and host shifts in two related galler groups that have radiated in parallel across a shared resource base indicate a lack of evolutionary repeatability in the focal system, and suggest that short- and long-term host use and ecological diversification in plant-feeding insects are dominated by stochasticity and/or lineage-specific effects.
Forfattere
Tarja Sundell Juhana I. Kammonen Ella Mustanoja Vincent Biard Mervi Kunnasranta Marja Niemi Milaja Nykänen Tommi Nyman Jukka U. Palo Mia Valtonen Lars Paulin Jukka Jernvall Petri AuvinenSammendrag
Fragmentation of isolated populations increases the risk of inbreeding and loss of genetic diversity. The endemic Saimaa ringed seal (Pusa hispida saimensis) is one of the most endangered pinnipeds in the world with a population of only ~ 400 individuals. The current genetic diversity of this subspecies, isolated in Lake Saimaa in Finland for ca. 1000 generations, is alarmingly low. We performed whole-genome sequencing on Saimaa ringed seals (N = 30) and analyzed the level of homozygosity and genetic composition across the individual genomes. Our results show that the Saimaa ringed seal population has a high number of runs of homozygosity (RoH) compared with the neighboring Baltic ringed seal (Pusa hispida botnica) reference population (p < 0.001). There is also a tendency for stillborn seal pups to have more pronounced RoH. Since the population is divided into semi-isolated subpopulations within the Lake Saimaa exposing the population to deleterious genomic effects, our results support augmented gene flow as a genetic conservation action. Based on our results suggesting inbreeding depression in the population, we recommend Pihlajavesi as a potential source and Southern Saimaa as a potential recipient subpopulation for translocating individuals. The Saimaa ringed seal is a recognized subspecies and therefore translocations should be considered only within the lake to avoid an unpredictable risk of disease, the introduction of deleterious alleles, and severe ecological issues for the population.
Forfattere
Matti T. Heino Tommi Nyman Jukka U. Palo Jenni Harmoinen Mia Valtonen Małgorzata Pilot Sanni Översti Elina Salmela Mervi Kunnasranta Risto Väinölä A. Rus Hoelzel Jouni AspiSammendrag
The Saimaa ringed seal (Pusa hispida saimensis) is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck. Today encompassing a little over 400 seals with extremely low genetic diversity, it is classified as endangered. We sequenced sections of the mitochondrial control region from 60 up to 125-years-old museum specimens of the Saimaa ringed seal. The generated dataset was combined with publicly available sequences. We studied how genetic variation has changed through time in this subspecies and how it is phylogenetically related to other ringed seal populations from the Baltic Sea, Lake Ladoga, North America, Svalbard, and the White Sea. We observed temporal fluctuations in haplotype frequencies and loss of haplotypes accompanied by a recent reduction in female effective population size. In apparent contrast with the traditionally held view of the Baltic origin of the population, the Saimaa ringed seal mtDNA variation also shows affinities to North American ringed seals. Our results suggest that the Saimaa ringed seal has experienced recent genetic drift associated with small population size. The results further suggest that extant Baltic ringed seal is not representative of the ancestral population of the Saimaa ringed seal, which calls for re-evaluation of the deep history of this subspecies.
Sammendrag
The Euura amentorum species group is Holarctic, and in Europe it is most species-rich in the North. Their larvae develop entirely within the female catkins of Salix species: some species bore in the central stalk, whereas others live outside this and feed mainly on the developing seeds. Eight Palaearctic species are treated here as valid, and a key to these is provided. Males of five species are known. Two new species are described from northern Europe: Euura pohjola sp. n. and E. ursaminor sp. n. First records of E. itelmena (Malaise, 1931) from the West Palaearctic are presented. We propose seven new synonymies: Pontopristia montana Lindqvist, 1961 (junior secondary homonym in Euura) with Euura freyja (Liston, Taeger & Blank, 2009); Pontopristia brevilabris Malaise, 1921, Amauronematus fennicus Lindqvist, 1944, Pontopristia boreoalpina Lindqvist, 1961, Pontopristia punctulata Lindqvist, 1961, and Amauronematus pyrenaeus Lacourt, 1995 with Euura microphyes (Förster, 1854); and Pteronidea holmgreni Lindqvist, 1968 with Nematus umbratus Thomson, 1871. Lectotypes are designated for: Amauronematus fennicus Lindqvist, 1944, Nematus amentorum Förster, 1854, Nematus suavis Ruthe, 1859, Pontopristia brevilabris Malaise, 1921, Pontopristia itelmena Malaise, 1931, Pontopristia kamtchatica Malaise, 1931, Pontopristia lapponica Malaise, 1921, Pontopristia latiserra Malaise, 1921, Pontopristia romani Malaise, 1921, and Pristiphora amentorum var. nigripleuris Enslin, 1916. Many new host plant associations are recorded.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Qiang Liu Yuanting Xu Yeqing Li Chengjie Ma Shuo Chen Lu Feng Quan Xu Junting Pan Bo Peng Hongjun Zhou Chunming XuSammendrag
Monophenols form humic acids (HA) through polycondensation reaction in the anaerobic digestion (AD) process, which will inhibit AD process. Currently, metal ions are the option for in-situ relieving HA inhibition during AD, but excess metal ions are harmful to microorganisms. In this study, carbon quantum dots (CQDs, a non-metallic materials) were proposed to relieve HA inhibition in-situ. We investigated the effect of HA on AD acidification and methanation stage, and synthesized CQDs using sodium citrate (s-CQDs) and p-phenylenediamine (p-CQDs) as precursors to relieve the HA inhibition in-situ. Results showed that s-CQDs (3.0 g/L) significantly increased the cumulative CH4 yield from AD of ethanol with 1.0 g/L HA (1.9 times higher than that without s-CQDs). Microbiological analysis indicated the most dominant methanogen was Methanosarcinaceae, with richness of 89.7%. Compared to the HA inhibition system, the relative abundance of Methanosarcinaceae increased by 87.5%. The analysis of interaction mechanism between CQDs and HA indicated that s-CQDs has an in-situ binding effect to HA by reacting with -OH, Cdouble bondC, and -COOH. This study provided a novel means for in-situ relieving HA inhibition, and illustrated the interaction mechanism between CQDs and HA, which will guide the application in production of bioenergy.
Sammendrag
Anaerobic digestion (AD) can be used as a stand-alone process or integrated as part of a larger biorefining process to produce biofuels, biochemicals and fertiliser, and has the potential to play a central role in the emerging circular bioeconomy (CBE). Agricultural residues, such as animal slurry, straw, and grass silage, represent an important resource and have a huge potential to boost biogas and methane yields. Under the CBE concept, there is a need to assess the long-term impact and investigate the potential accumulation of specific unwanted substances. Thus, a comprehensive literature review to summarise the benefits and environmental impacts of using agricultural residues for AD is needed. This review analyses the benefits and potential adverse effects related to developing biogas-centred CBE. The identified potential risks/challenges for developing biogas CBE include GHG emission, nutrient management, pollutants, etc. In general, the environmental risks are highly dependent on the input feedstocks and resulting digestate. Integrated treatment processes should be developed as these could both minimise risks and improve the economic perspective.