Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2007

Sammendrag

Komposterbarheten til sedimentlag B fra sikringsbassenget på raffineriet på Mongstad er vurdert på grunnlag av analyser av slammet. Laget planlegges fjernet for å øke sedimentasjonen i sikringsbassenget. Kompostering er et alternativ for behandling av massene. Basert på tidligere forsøk med kompostering av bioslam fra renseanleggene vurderes sedimentasjonslag B som komposterbart med innblanding av strukturmaterialer i volumforholdet 4:1 (struktur: slam) ved rankekompostering og 1:1 ved trommelkompostering. Slammet bør tilføres fullgjødsel for å justere C:N forholdet. Det er forventet en reduksjon av organisk innhold på 60 % etter 60 dagers kompostering i ranker og korter tid ved trommelkompostering. PAH og oljerester forventes også redusert med 30-50 % i samme periode og ytterligere redusert ved ettermodning. Resultatet av komposteringen med en forventet reduksjon av organisk materiale på mellom 70 og 90 % viser at mengden sink er for høy til at komposten kan godkjennes etter kvalitetskravene i Gjødselvareforskriften. Konsentrasjonene av PAH vil ligge over anbefalt nivå på 5 mg/kg TS i ferdig kompost, men undersøkelser har vist at svært lite av PAH stoffene lekker ut ved nedbør. En sammenstilling av tilbud på kompostering bør gi et økonomisk grunnlag for å vurdere beste komposteringsløsning. Kompostering i trommelreaktor eller storranke med biofilter vurderes som de mest aktuelle metodene. Kompostering kan også nyttes som en forbehandling før forbrenning ved at tørrstoffet i massene øker slik at brennverdien forbedres.

Sammendrag

The Skjønhaug constructed wetland (CW) is a free surface water (FSW) wetland polishing chemically treated municipal wastewater in southeastern Norway and consists of three ponds as well as trickling, unsaturated filters with light weight aggregates (LWA). Fluxes of nitrous oxide (N2O) and methane (CH4) have been measured during the autumn, winter and summer from all three ponds as well as from the unsaturated filters. Physicochemical parameters of the water have been measured at the same localities. The large temporal and spatial variation of N2O fluxes was found to cover a range of -0.49 to 110 mg N2O-N m-2 day-1, while the fluxes of CH4 was found to cover a range of -1.2 to 1900 mg m-2 day-1. Thus, both emission and consumption occurred. Regarding fluxes of N2O there was a significant difference between the summer, winter and autumn, with the highest emissions occurring during the autumn. The fluxes of CH4 were, on the other hand, not significantly different with regard to seasons. Both the emission of N2O and CH4 was positively influenced by the amount of total organic carbon (TOC). The measured fluxes of N2O and CH4 are in the same range as those reported from other CWs treating wastewater. There was an approximately equal contribution to the global warming potential from N2O and CH4.

Sammendrag

Oil transportation from the Russian part of the Barents Region along the Norwegian coast had insignificant volumes before 2002. However, in 2002 there was a dramatic increase in oil shipment, when 4 million tons of oil was transported across the northern regions. In 2003, the volume reached 8 million tons. The trend continued in 2004, and about 12 million tons of export oil and oil products were delivered from the Russian part of the Barents Region to the western market along the Norwegian coast. In 2005, the oil shipment volumes dropped to 9.5 million tons, and in 2006 increased to 10.5 million tons. In the present report on oil transportation from the Russian North, we have given special attention to the description of the existing and prospective offshore and onshore oil shipment terminals, and their connection to the oil reserves on one hand and to the export routes on the other. In this report we demonstrate that even without a trunk oil pipeline to the Barents Sea coast, the annual oil exports from the Russian part of the Barents Region may reach a volume of about 50-80 million tons in the next decade. About 50 million tons of crude oil and oil products can be delivered by railway to the Murmansk ports in the Barents Sea, and Kandalaksha and Arkhangelsk in the White Sea. In addition, up to 20 million tons of oil will come from the northern oil fields in the Nenets Autonomous Region, and from Prirazlomnoye oil field in the Pechora Sea. Prirazlomnoye is the first offshore industrial oil field in the Russian part of the Barents Region, the operations there will go on all year round, and most of the year in ice-covered waters. Dolginskoye oil field, which is also in the Pechora Sea and estimated to be three times as big as Prirazlomnoye, can produce the first oil in 2013. There will be stable increase in the amounts of oil shipped from Western Siberia. The terminals in the Kara Sea can load 2-3 million tons of crude oil for transhipment in the Kola Bay of the Barents Sea. In the European part of Russia there are three possibilities for shipping oil for export. The first way is through the Black Sea via the Bosporus to the Mediterranean Sea. Another route is through the Baltic Sea via the Gulf of Finland and Kattegat. The third alternative is to transport oil through the Barents Sea along the coasts of north-western Russia and northern Norway. Out of these three options only the northern one, the Barents Sea route, can provide the possibility of stable shipping large amounts directly to European and other major harbours, avoiding the challenges of transit through the neighbouring countries or heavy traffic in the sea straits. Oil pollution prevention should be the central issue during oil transportation in the Barents Sea. In this report we pay attention to the environmental safety matters in oil transportation and Norwegian-Russian co-operation in the oil pollution prevention. The increasing internationalisation of the transport system in the region appears to affect the present trend toward more advanced and safer terminals and vessels that comply with international safety rules. Early warning and notification of ships passing through the Norwegian waters has been used more frequently and on voluntary basis, but still not as often as desired and can be arranged within a bilateral Russian-Norwegian agreement. The establishment of traffic control centres in Vardø and Murmansk will considerably improve the oil spill prevention and response preparedness.

Sammendrag

Oil shipment in the Barents Region had insignificant volumes before 2002. In 2002, there was a dramatic increase in oil transportation, when 4 million tons of oil was shipped across the northern regions of Russia and Norway. In 2003, the volume reached 8 million tons. The trend continued in 2004, and about 12 million tons of export oil and oil products were delivered from the Russian Arctic to the western market along the Norwegian coast. In 2005 and 2006, the annual oil shipment volume was on the level of 10 million tons. The terminals loading Russian oil for export in the Barents Region have been continuously developed, and the overall shipping capacity has been enlarged. In the recent study of oil shipment in the Barents Region we gave special attention to the existing and prospective offshore and onshore oil shipment terminals and their connection to the oil reserves on one hand and to the export routes on the other. We see now that even without a trunk oil pipeline to the Barents Sea coast, the annual oil exports from the Russian part of the Barents Region may reach a volume of about 50-80 million tons in the next decade. Crude oil and oil products will be delivered to the transshipment terminals in the ice free area of the Barents Sea by railway and shuttle tankers, and further shipped to export by line tankers. Oil pollution prevention should be the central issue during oil transportation in the Barents Sea.

Sammendrag

I dette notatet vil jeg gi noen innfallsvinkler for hvordan miljøvernet kan få en bedre plass i samarbeidet mellom Norge og Russland. Først vil jeg se på det bilaterale miljøsamarbeidet, og deretter på skipstransporten av olje som passerer kysten av Norge på vei fra Russland. Mine kommentarer er fremsatt med utgangspunkt i min bakgrunn fra det bilaterale miljøsamarbeidet mellom Norge og Russland, hvor jeg særlig har fordypet meg i spørsmål knyttet til oljetransport med skip. http://www.regjeringen.no/nb/dep/ud/kampanjer/refleks/innspill/miljo_klima/Frantzen.html?id=492832

Sammendrag

Fiskepredasjon i innsjøer skjer gjennom fiskespisende fisk og er med på å påvirke næringsdynamikken i akvatiske økosamfunn. Gjennom feltundersøkelser er vist at ørret (Salmo trutta L.) kan være en storkonsument av små byttefisk, og at tilgangen av byttefiskarter i egnede størrelser og høye tettheter er viktige faktorer som påvirker næringsvalget til predatoren.

Til dokument

Sammendrag

Gråvannsrenseanlegg med biofilter består av en vanlig slamavskiller, alternativt et slamfilter for hytter, en pumpekum eller integrert pumpesump og et biofilter som hovedrensetrinn. Vanlig slamavskiller anbefales dersom det er bilvei frem til anlegget. Et eget renseanlegg for gråvann forutsetter separat toalettløsning. Gråvannsrenseanlegg med biofilter er mest aktuelt for rensing av gråvann fra hytter der grunnforholdene ikke muliggjør tradisjonelle infiltrasjonsanlegg, men kan også være aktuell for boliger i kombinasjon med WC til tett tank. Løsningen kan gi tilfredsstillende rensing i områder med sårbare resipientforhold.