Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2013

Sammendrag

69 slides i en PP som beskriver de forskjellige russiske urfolkene og deres utfordringer i dag.

Sammendrag

Three methods for extracting DNA were tested on otoliths, scales, fins, and gill tissue from European whitefish [Coregonus lavaratus (L.)]. The aim was to find time-efficient and affordable ways to simultaneously extract DNA suitable for conservation genetic studies from a large number of samples and different tissues. A rapid low-cost method led to 97 % success of microsatellite amplification in otoliths and 100 % in scales. High amplification success was achieved with fin (97 %) and gill (99 %) tissue using a salt lysis-based protocol. A commercial extraction kit delivered good results with all tissues. The findings are useful for conservation genetic studies using both contemporary and archived samples.

Sammendrag

Atmospheric deposition to forests has been monitored in the frame of the ICP Forests programme with sampling and analyses of bulk and throughfall deposition at several hundred forested Level II plots for more than 15 years now. Current deposition of inorganic nitrogen and sulphate is highest in Northern Central Europe as well as in some regions in southern parts. In this study we compared linear regression and MannKendall trend analyses techniques. The choice of method had an influence on the number of trends identified as being significant. We showed that the minimal detectable trends can be estimated with the mean short term temporal variability of the deposition, which is to a large extent due to meteorological variations, such as the precipitation and circulation patterns. The overall decreasing trends for inorganic N and SO42- in the past decade of about 3% and 6% require time series of about 10 and 6 years respectively to detect a trend on a plot with statistical significance. Past reduction of human emission reduced atmospheric deposition of acidifying and eutrophying compounds. This could be confirmed due to the availability of long-term data series. However, further reductions are required to reduce deposition to forests below critical loads for the whole of Europe.