Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2019
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Tatsiana EspevigSammendrag
Det er ikke registrert sammendrag
Forfattere
Tatsiana EspevigSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Inge Stupak Tat Smith Nicholas Clarke Teodorita Al-Seadi Lina Beniušienė Niclas Scott Bentsen Quentin Cheung Virginia Dale Jinke van Dam Rocio Diaz-Chavez Uwe Fritsche Martyn Futter Jianbang Gan Kaija Hakala Thomas Horschig Martin Junginger Yoko Kitigawa Brian Kittler Keith Kline Charles Lalonde Søren Larsen Dagnija Lazdina Thuy P. T. Mai-Moulin Maha Mansoor Edmund Mupondwa Shyam Nair Nathaniel Newlands Liviu Nichiforel Marjo Palviainen John Stanturf Kay Schaubach Johanny Arilexis Perez Sierra Vita Tilvikiene Brian Titus Daniela Thrän Sergio Ugarte Liisa Ukonmaanaho Iveta Varnagiryte-Kabasinskiene Maria WellischSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Humic substances are important indicators of soil fertility. The fluorescence properties of humic acids from black soils in Harbin, northeast China, were investigated, after long-term fertilization using treatments with or without mineral fertilizer (NPK) and organic manure. Excitation and emission matrices combined with parallel factor analysis were used to investigate the structure of the humic acid. Principal component analysis was performed to select the most suitable parameters for the description of humic acid. The dimension reduction for the original fluorescence parameters extracted two principal components. By using the two principal component scores as a new index for clustering, it was concluded that long-term fertilization treatments in black soil in Harbin clustered into three groups of manure + NPK and organic manure treatments, NPK treatment, and soil without any fertilization. Manure + NPK fertilization and manure fertilization alone led to a higher degree of humification than NPK only or the control. We conclude that long-term fertilization with organic matter with or without NPK could increase the humification degree of these soils.
Sammendrag
The objective of this study was to make an overview assessment of the potential effects of intensified forest management, promoted by the Norwegian government as a climate mitigation measure, on water quality in Norwegian surface waters. This study evaluated the following measures for forest intensification: (i) afforestation, (ii) intensification of planting and (iii) nitrogen fertilization shortly before harvest. A substantial literature review was made and a further development of the DWARF- framework tailored for Norwegian conditions provided the base for the study. The assessments were made based on the potential effects after forest harvest, using different management strategies like stem-only harvest and whole-three harvest. The potential effects were analysed on multiple parameters with focus on acidification, eutrophication, heavy metals, and carbon sequestration. The study used temporal resolution to address what effects the forest management practices might lead to 1, 10 and 100 years after harvest. This study concludes that there will be trade-offs between transitioning to a low carbon society and water quality, and the severity of effects may differ if they are evaluated on an annual, decadal or century scale.
Forfattere
Patrick J. Drohan Marianne Bechmann Anthony Buda Faruk Djodjic Donnacha Doody Jonathon M. Duncan Antti Iho Phil Jordan Peter J. Kleinman Richard McDowell Per-Erik Mellander Ian A. Thomas Paul J. A. WithersSammendrag
The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer‐specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm‐specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems. Recent developments focused on integrated digital mapping of hydrologically sensitive areas and critical source areas, sometimes using real‐time data and weather forecasting, have rapidly advanced runoff modeling and education. Advances in technology related to monitoring, imaging, sensors, remote sensing, and analytical instrumentation will facilitate the development of DSSs that can predict heterogeneity over wider geographical areas. However, significant challenges remain in developing DSSs that incorporate “big data” in a format that is acceptable to users, and that adequately accounts for catchment variability, farming systems, and farmer behavior. Future efforts will undoubtedly focus on improving efficiency and conserving phosphate rock reserves in the face of future scarcity or prohibitive cost. Most importantly, the principles reviewed here are critical for sustainable agriculture.