Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Despite the availability of improved antiviral therapies, infection with Hepatitis B virus (HBV) remains a3 significant health issue, as a curable treatment is yet to be discovered. Current HBV vaccines relaying on the efficient expression of the small (S) envelope protein in yeast and the implementation of mass vaccination programs have clearly contributed to containment of the disease. However, the lack of an efficient immune response in up to 10% of vaccinated adults, the controversies regarding the seroprotection persistence in vaccine responders and the emergence of vaccine escape virus mutations urge for the development of better HBV immunogens. Due to the critical role played by the preS1 domain of the large (L) envelope protein in HBV infection and its ability to trigger virus neutralizing antibodies, including this protein in novel vaccine formulations has been considered a promising strategy to overcome the limitations of S only-based vaccines. In this work we aimed to combine relevant L and S epitopes in chimeric antigens, by inserting preS1 sequences within the external antigenic loop of S, followed by production in mammalian cells and detailed analysis of their antigenic and immunogenic properties. Of the newly designed antigens, the S/preS116–42 protein assembled in subviral particles (SVP) showed the highest expression and secretion levels, therefore, it was selected for further studies in vivo. Analysis of the immune response induced in mice vaccinated with S/preS116–42- and S-SVPs, respectively, demonstrated enhanced immunogenicity of the former and its ability to activate both humoral and cellular immune responses. This combined activation resulted in production of neutralizing antibodies against both wild-type and vaccine-escape HBV variants. Our results validate the design of chimeric HBV antigens and promote the novel S/preS1 protein as a potential vaccine candidate for administration in poor-responders to current HBV vaccines.

Til dokument

Sammendrag

Production of biochar from corn cob and corn stalk has gained great interest for efficient waste management with benefits of improving soil properties, increasing crop productivity, and contributing to carbon sequestration. This study investigated slow pyrolysis of corn cob and corn stalk at 600 °C to characterize yields and properties of products, with focus on solid biochar. Spruce wood, a rather well studied woody biomass, was also included for comparison purposes. It was observed that yields of biochar and condensates from corn cob, corn stalk, and spruce wood were comparable. However, gas release profiles and yields from the three biomasses were quite different, which is mainly related to the different chemical compositions (i.e., hemicellulose, cellulose, lignin, and inorganic species) of the studied raw feedstocks. The produced biochars were analyzed for proximate analysis, CHNS-elemental analysis, specific surface area and specific pore volume for pores in the nm-range, inorganic composition, solid functional groups, and aromaticity. The corn cob and corn stalk biochar presented significantly higher concentration of inorganic elements, especially P and K, favoring soil application. The SEM analysis results showed that the spruce wood biochar has different microstructure than corn cob and corn stalk biochars. Condensates and light gases, as by-products from biochar production, contained over 50% of the energy and 40% of the total carbon of the initial biomass. Utilization of the condensates and light gases as valuable resources is therefore critical for improving environmental and energy benefits of the biochar production process.