Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Drought-induced mortality is a major direct effect of climate change on tree health, but drought can also affect trees indirectly by altering their susceptibility to pathogens. Here, we report how a combination of mild or severe drought and pathogen infection affected the growth, pathogen resistance and gene expression in potted 5-year-old Norway spruce trees [Picea abies (L.) Karst.]. After 5 weeks of drought, trees were inoculated with the fungal pathogen Endoconidiophora polonica. Combined drought–pathogen stress over the next 8 weeks led to significant reductions in the growth of drought-treated trees relative to well-watered trees and more so in trees subjected to severe drought. Belowground, growth of the smallest fine roots was most affected. Aboveground, shoot diameter change was most sensitive to the combined stress, followed by shoot length growth and twig biomass. Both drought-related and some resistance-related genes were upregulated in bark samples collected after 5 weeks of drought (but before pathogen infection), and gene expression levels scaled with the intensity of drought stress. Trees subjected to severe drought were much more susceptible to pathogen infection than well-watered trees or trees subjected to mild drought. Overall, our results show that mild drought stress may increase the tree resistance to pathogen infection by upregulating resistance-related genes. Severe drought stress, on the other hand, decreased tree resistance. Because drought episodes are expected to become more frequent with climate change, combined effects of drought and pathogen stress should be studied in more detail to understand how these stressors interactively influence tree susceptibility to pests and pathogens.

Til dokument

Sammendrag

Key words: VKM, pest risk analysis, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, Sudden oak death, Phytophthora ramorum Introduction The Norwegian Food Safety Authority has asked the Norwegian Scientific Committee for Food and Environment for an updated pest risk assessment of Phytophthora ramorum in Norway. The previous risk assessment of P. ramorum for Norway is from 2009. Since then, the pathogen has been detected repeatedly in Norway, primarily in parks, garden centres, and nurseries in southwestern Norway. The knowledge base concerning P. ramorum has changed since the last pest risk assessment, with increased genetic knowledge about different populations, lineages, and mating types. The risks associated with P. ramorum have also changed, since the disease has become epidemic in new host plants, such as larch trees in England. This updated pest risk assessment will provide important input to the Norwegian Food Safety Authority’s efforts to develop the Norwegian plant health regulation. Methods VKM established a project group with expertise in plant health, forest pathology, horticultural plant pathology, plant disease modelling, and pest risk assessment. The group conducted systematic literature searches and scrutinized the relevant literature. In the absence of Norwegian studies, VKM relied on literature from other countries. The group did a quantitative risk assessment describing the level of confidence in the conclusions and identifying uncertainties and data gaps. The report underwent pre-submission commenting and external expert reviewing before final approval and publication. Results and conclusions Phytophthora ramorum is present in the PRA area but has a restricted distribution, mainly being detected in the southern and southwestern parts of Norway. The only P. ramorum lineage considered to be present in Norway is EU1 with mating type A1. The other lineage in Europe, EU2, has so far mainly been documented from the UK. The most widely distributed multilocus genotype of P. ramorum in Norway is EU1MLG1, which became dominant in Europe (including Norway) after 2008. In North America, the NA1, NA2, and EU1 lineages are known from both nurseries and forests. NA1 and NA2 are of the opposite mating type (A2) than European lineages. Recently, various other lineages of P. ramorum have been described from Asia. The main risks for future problems with P. ramorum in Norway are related to entry and establishment of non-European isolates (of all lineages), as well as emergence of new genotypes in European P. ramorum populations. There are several options for diagnosing P. ramorum to species and lineage (mainly EU1, EU2, NA1, and NA2). From a management perspective it is more important to distinguish these entities than mating type and isolate groups (genotypes). The latter are mainly relevant for research purposes or in cases of unexpected disease developments, such as new hosts, increased spread or more severe symptoms on known hosts. However, for more detailed regulation, monitoring, and management of P. ramorum it could also be useful to test for genotypes, i.e. to distinguish EU1MLG1 from other genotypes. Rhododendron remains the most important host plant for P. ramorum in Norway, both in terms of imported plants and detections (mainly in nurseries, garden centres, and public parks). Species in other ornamental plant genera, such as Viburnum, Pieris, and Kalmia, are also listed as major hosts in Europe, and P. ramorum has been detected at least once on species in all these genera in Norway. In the US, Rhododendron, Viburnum, Pieris, Syringa, and Camellia are considered to be the main ornamental hosts. .....................