Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2022
Forfattere
Yeqing Li Xingru Yang Mingyu Zhu Liming Dong Hao Jiang Quan Xu Hongjun Zhou Yongming Han Lu Feng Chengfei LiSammendrag
The amount of lignocellulose biomass and sludge is enormous, so it is of great significance to find a treatment combining the two substances. Co-hydrothermal carbonization (Co-HTC) has emerged as an efficient approach to dispose sludge. However, the improvement of sludge upgrading and combustion performance remains an important challenge during the Co-HTC of sludge. In this work, the Co-HTC of sludge and Fenton's reagent at different mixing ratios was proposed to achieve sludge reduction. Moreover, the addition of two kinds of biomass improved the adsorption capacity and combustion performance of hydrochars. When sludge and sawdust were the Co-HTC at the mass ratio of 1:3, the liquid phase Pb concentration decreased notably to 18.06%. Furthermore, the adsorption capacity of hydrochars was further improved by modification, which was in accordance with pseudo-second-order kinetics. Particularly, the hydrochars derived from the Co-HTC had higher heating value (HHV) and could be used as a clean fuel. This study proposed a new technical route of combining the HTC with Fenton's reagent and lignocellulose biomass, which could be served as a cleaner and eco-friendly treatment of sludge.
Forfattere
Lu FengSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Zhanjiang Pei Shujun Liu Zhangmu Jing Yi Zhang Jingtian Wang Jie Liu Yajing Wang Wenyang Guo Yeqing Li Lu Feng Hongjun Zhou Guihua Li Yongming Han Di Liu Junting PanSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Claire CoutrisSammendrag
Det er ikke registrert sammendrag
Sammendrag
Bioretention cells are popular stormwater management systems for controlling peak runoff and improving runoff water quality. A case study on a functional large-scale bioretention cell and a laboratory column experiment was conducted to evaluate the concentrations and retention efficiency of bioretention cells towards tire wear particles (TWP). The presence of TWP was observed in all soil fractions (<50 µm, 50–100 µm, 100–500 µm, and >500 µm) of the functional bioretention cell. TWP concentrations were higher (30.9 ± 4.1 mg/g) close to the inlet to the bioretention cell than 5 m away (19.8 ± 2.4 mg/g), demonstrating the influence of the bioretention cell design. The column experiment showed a high retention efficiency of TWP (99.6 ± 0.5%) in engineered soil consisting of sand, silty-sand, and garden waste compost. This study confirmed that bioretention cells built with engineered soil effectively retained TWP > 25 µm in size, demonstrating their potential as control measures along roads.
Forfattere
Cecilia Askham Valentina Pauna Anne-Marie Boulay Peter Fantke Olivier Jolliet Jerome Lavoie Andy Booth Claire Coutris Francesca Verones Miriam Weber Martina G. Vijver Amy Lorraine Lusher Carla HajjarSammendrag
Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.
Forfattere
Cecilia Askham Valentina H. Pauna Anne-Marie Boulay Peter Fantke Olivier Jolliet Jerome Lavoie Booth Andy M. Claire Coutris Francesca Verones Miriam Weber Martina G. Vijver Amy Lorraine Lusher Carla HajjarSammendrag
Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.
Forfattere
Cecilia Askham Valentina Pauna Anne-Marie Boulay Peter Fantke Olivier Jolliet Jerome Lavoie Andy Booth Claire Coutris Francesca Verones Miriam Weber Martina G. Vijver Amy Lorraine Lusher Carla HajjarSammendrag
Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.