Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2007

Sammendrag

Leakage of tributyltin (TBT) to coastal environment is documented globally and represents environmental hazards because of long half lives in anaerobic environment and accumulation in biota. Concentrations below 1 ng/l influence marine organisms. Hence, pollution control authorities request abatements to mitigate toxic concentration levels. Dredging of contaminated sediments is one abatement strategy, but this approach requires safe landfill repositories. An alternative strategy is to cover contaminated sea bottom areas by cap layers of favourable composition and thereby reduce TBT exposure to the environment. Both abatement strategies require understanding of chemical and physical processes involved at the pore scale and at the field scale. In the present study pore scale processes are investigated by laboratory experiments on dredged sediments from contaminated sea bottom and integrated to field scale by numerical simulations. The distribution of TBT between solid and water phase is a function of several parameters viz texture; composition of clay minerals; content of organic matter; pH; and salinity in the pore water. The influences of these parameters on the mobility of TBT in sediments are studied with emphasize on variable salinity flux through the porous media. In our data the mobility of TBT increases as a function of decreasing salinity. Long term leakage of TBT is simulated in a typified near shore landfill with initial marine salt water concentration in the pore water. Initial TBT concentration in pore water is estimated to 30 ng/l, which is corresponding to a chemical equilibrium of 1 mg/kg of TBT in the sediments. Because sorption of TBT varies as a function of salinity, the transport of TBT has to be coupled to concentration of NaCl in the pore water. The pore water flow depends not only on the relation between infiltration of meteoric water and permeability of the sediments, but also on the concentration of NaCl, thus Darcy law has to be coupled to transport of NaCl. In this way transport of TBT require a coupling of three types of physics. First is Darcy pore water flow coupled to concentration of NaCl, and then concentration of NaCl is coupled to desorption of TBT.

Til dokument

Sammendrag

In some parts of the world, the soil selenium (Se) content is too low to ensure the Se level recommended for human or animal consumption in the crops produced. In order to secure a desired concentration of Se in crops, Se has been applied as mineral fertilizer to agricultural fields. Since only a minor part of the inorganic Se applied is utilized by plants and small increases in Se concentrations in, e.g., drinking water, may be toxic, the method is somewhat controversial. As an alternative to Se-enriched mineral fertilizer, different seafood-processing wastes have been examined as a source for Se in crop production. Both in greenhouse pot experiments and field trials the Se in seafood waste was not plant-available during the first growing season. There was no significant difference between the Se concentration in wheat growing in soil without added Se and in soil receiving Se from seafood waste in amounts ranging from 0.9 to 9 g ha(-1). Neither was any residual effect of Se in seafood waste seen during a second year growth period. Thus, seafood-processing waste cannot be regarded as a potential source of Se in crop production. Possible mobilization of formerly applied Se, as seafood-processing waste or Se enriched mineral fertilizer due to changes in soil redox conditions were examined in a leaching experiment. The mobility of formerly applied Se was generally very low, but the results indicated that under permanently wet soil conditions leaching of Se may occur in plant dormant periods in soils with low organic matter content and high pH.

Sammendrag

Det ser ut til at på mineraljord er kalium (K) sjelden en vekstbegrensende faktor i økologisk eng. Nivået av K-AL og syreløselig K i jorda påvirker i liten grad avlingsnivået. Kaliumkonsentrasjonen i avlingen øker derimot med økende nivå av jordanalysetallene. Tilsvarende gir K-gjødsling økt K-konsentrasjon i avlingen, men ingen signifikant effekt på avling.

Til dokument

Sammendrag

The objective of the present study was to investigate the influence of soil organic matter content and pH on plant availability of both inorganic and organic selenium (Se) fertilisers. Further, the risk of Se leaching after application of inorganic Se fertiliser was evaluated. A new interpretation of an older field study at different sites in Southern Norway showed that organic C was correlated with grain Se concentration in wheat, barley and oats, explaining up to 60% of the variation in Se concentration. Pot experiments with a peat soil, a loam soil and a peat/loam soil mixture were conducted for the present study at a range of pH values between pH 5 and 7. Below pH 6, Se uptake from added Se fertiliser was higher in the soil types with high organic matter content than in the loam. The opposite occurred at a soil pH above 6, where Se uptake was higher in the loam than in the peat soil. A simple leaching experiment after one growing season confirmed the findings of the pot experiments that Se availability in the loam soil with a relatively low organic matter content increased with increasing pH, whereas it decreased in the peat soil. Neither Se yeast, nor pure Se methionine, used as organic Se fertiliser, resulted in any significant uptake of Se when added at concentrations similar to the inorganic Se applications.