Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Til dokument

Sammendrag

Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.

Til dokument

Sammendrag

Process-based models (PBM) for simulation of weather dependent grass growth can assist farmers andplant breeders in addressing the challenges of climate change by simulating alternative roads of adap-tation. They can also provide management decision support under current conditions. A drawback ofexisting grass models is that they do not take into account the effect of winter stresses, limiting theiruse for full-year simulations in areas where winter survival is a key factor for yield security. Here, wepresent a novel full-year PBM for grassland named BASGRA. It was developed by combining the LIN-GRA grassland model (Van Oijen et al., 2005a) with models for cold hardening and soil physical winterprocesses. We present the model and show how it was parameterized for timothy (Phleum pratense L.),the most important forage grass in Scandinavia and parts of North America and Asia. Uniquely, BASGRAsimulates the processes taking place in the sward during the transition from summer to winter, includ-ing growth cessation and gradual cold hardening, and functions for simulating plant injury due to lowtemperatures, snow and ice affecting regrowth in spring. For the calibration, we used detailed data fromfive different locations in Norway, covering a wide range of agroclimatic regions, day lengths (latitudesfrom 59◦to 70◦N) and soil conditions. The total dataset included 11 variables, notably above-ground drymatter, leaf area index, tiller density, content of C reserves, and frost tolerance. All data were used inthe calibration. When BASGRA was run with the maximum a-posteriori (MAP) parameter vector fromthe single, Bayesian calibration, nearly all measured variables were simulated to an overall normalizedroot mean squared error (NRMSE) < 0.5. For many site × experiment combinations, NRMSE was <0.3. Thetemporal dynamics were captured well for most variables, as evaluated by comparing simulated timecourses versus data for the individual sites. The results may suggest that BASGRA is a reasonably robustmodel, allowing for simulation of growth and several important underlying processes with acceptableaccuracy for a range of agroclimatic conditions. However, the robustness of the model needs to be testedfurther using independent data from a wide range of growing conditions. Finally we show an exampleof application of the model, comparing overwintering risks in two climatically different sites, and dis-cuss future model applications. Further development work should include improved simulation of thedynamics of C reserves, and validation of winter tiller dynamics against independent data.

Til dokument

Sammendrag

The use of seaweeds in animal diets is not new. However, little is known about the feed value of seaweed, both in terms of chemical composition and protein digestibility, and regarding variation between species and season. In this study, eight seaweed species of the genus Acrosiphonia, Alaria, Laminaria, Mastocarpus, Palmaria, Pelvetia, Porphyra, and Ulva were sampled in spring (March) and autumn (October and November) 2014 at the coast of Bodø in Northern Norway, and were analysed for chemical composition, in situ rumen degradability and total tract crude protein (CP) digestibility. Ash content in dry matter (DM) was generally high (overall mean 190 g/kg in DM) and varied considerably, between species (P < 0.01) and between seasons (P = 0.02). CP concentration in DM varied both between species (P < 0.0001) and seasons (P < 0.01). Highest CP in DM was found for Porphyra (350 g/kg DM) and lowest for Pelvetia (90 g/kg DM). Spring samples were higher in CP than autumn samples. The effective degradability estimated at 5% rumen passage rate (ED5) of CP varied between species (P < 0.0001) but not between seasons (P = 0.10). The highest ED5 of CP was found for Alaria (550 g/kg CP) and lowest for Ulva (240 g/kg CP). Digestible rumen escape protein (DEP) varied significantly between species (P < 0.0001) but not between seasons (P = 0.06); highest DEP was found for Ulva (530 g/kg CP) and Porphyra (500 g/kg CP). Based on our results, Acrosiphonia, Alaria, Laminaria, Mastocarpus and Palmaria can supply the rumen with high amounts of rumen degradable protein, while Porphyra and Ulva can be used as a source of digestible bypass protein. Pelvetia had a very low degradability and should not be used to feed dairy cows.

Til dokument

Sammendrag

Reasons for performing study: Horses may adapt to a wide range of temperatures and weather conditions. Owners often interfere with this natural thermoregulation ability by clipping and use of blankets. Objectives: To investigate the effects of different winter weather conditions on shelter seeking behaviour of horses and their preference for additional heat. Study design: Observational study in various environments. Methods: Mature horses (n=22) were given a free choice test between staying outdoors, going into a heated shelter compartment or into a nonheated shelter compartment. Horse location and behaviour was scored using instantaneous sampling every minute for one hour. Each horse was tested once per day and weather factors were continuously recorded by a local weather station. Results: The weather conditions influenced time spent outdoors, ranging from 52 % (of all observations) on days with mild temperatures, wind and rain to 88 % on days with less than 0°C and dry weather. Shivering was only observed during mild temperatures and rain/sleet. Small Warmblood horses were observed to select outdoors less (34 % of all observations) than small Coldblood horses (80 %). We found significant correlations between hair coat sample weight and number of observations outdoors (ρ = 0.23; P = 0.004). Conclusions: Horses selected shelters the most on days with precipitation and horses changed from a nonheated compartment to a heated compartment as weather changed from calm and dry to wet and windy. Horse breed category affected the use of shelter and body condition score and hair coat weight were associated with voluntary shelter selection.