Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

(1) We document the invertebrate fauna collected from 24 oak canopies in east and west Norway as a contribution to the Norwegian Biodiversity Information Centre’s ‘The Norwegian Taxonomy Initiative’. (2) A snap-shot inventory of the canopies was recorded by means of emitting a mist of natural pyrethrum into the canopies at night using a petrol-driven fogger and collecting the specimens in butterfly nets spread on the ground under the canopy. (3) Almost the entire catch of more than 6800 specimens was identified to 722 species. Out of 92 species new to the Norwegian fauna, 21 were new to science and, additionally, 15 were new to the Nordic fauna. Diptera alone constituted nearly half of the species represented, with 61 new records (18 new species). Additionally, 24 Hymenoptera (one new species), six oribatid mites (two new species) and one Thysanoptera were new to the Norwegian fauna. (4) Our study emphasizes the importance of the oak tree as a habitat both for a specific fauna and occasional visitors, and it demonstrates that the canopy fogging technique is an efficient way to find the ‘hidden fauna’ of Norwegian forests. The low number of red listed species found reflects how poor the Norwegian insect fauna is still studied. Moreover, the implication of the IUCN red list criteria for newly described or newly observed species is discussed.

Til dokument

Sammendrag

Coconut is recognized for its popularity in contributing to food and nutritional security. It generates income and helps to improve rural livelihood. However, these benefits are constrained by lethal yellowing disease (LYD). A clear understanding of climate suitable areas for disease invasion is essential for implementing quarantine measures. Therefore, we used a machine learning algorithm based on maximum entropy to model and map habitat suitability of LYD and coconut under current and future climate change scenarios using three Shared Socio-economic Pathways (SSPs) (1.26, 3.70 and 5.85) for three time periods (2041–2060, 2061–2080 and 2081–2100). Outside its current range, the model projected habitat suitability of LYD in Australia, Asia and South America. The distribution of coconut exceeded that of LYD. The area under the curve value of 0.98 was recorded for LYD, whereas 0.87 was obtained for the coconut model. The predictor variables that most influenced LYD projections were minimum temperature of the coldest month (88.4%) and precipitation of the warmest quarter (7.3%), whereas minimum temperature of the coldest month (85.9%) and temperature seasonality (8.7%) contributed most to the coconut model. Our study highlights potential climate suitable areas of LYD and coconut, and provides useful information for increasing quarantine measures and developing resistant or tolerant coconut varieties against the disease. Also, our study establishes an approach to model the climatic suitability for surveillance and monitoring of the disease, especially in areas that the disease has not been reported.