Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2017

Sammendrag

Det er gjennomført et omfattende litteraturstudium som omfatter renseeffekter i buffersoner, og prosesser og faktorer som påvirker disse, samt kanterosjon langs elver og bekker og kantsoners mulige bidrag til flomdemping. I tillegg er biomangfold i kantsoner belyst. Det er store variasjoner i renseeffekter i buffersoner: Partikler (32-91 %), fosfor (26-100 %) og nitrogen (0-100 %). Årsaken til at buffersoners evne til å holde tilbake jord, næringsstoffer og andre forurensningskomponenter er at de avhenger en rekke komplekse renseprosesser, hvorav oppbremsing av overflatevann og sedimentasjon er av de viktigste. Disse renseprosessene påvirkes igjen av en rekke forhold, hvor blant annet tilførsel av jord og næringsstoffer fra nedbørfeltet, samt helling og bredde på buffersoner er av de viktigste. I tillegg påvirkes dette av vær og klima.

Til dokument

Sammendrag

A talajok tulajdonságainak javítása céljából végzett bioszénnel történő kezelések hatása a különböző fizikai, kémiai és biológiai tulajdonságú talajok esetében még nem teljesen ismert. Kísérleteinket homoktalajon végeztük az MTA ATK TAKI Őrbottyánban lévő kísérleti telepén, ahol kukoricát vetettek. Hét kezelést vizsgáltunk, négy ismétlésben. Három esetben a talaj különböző dózisban bioszenet és konstans dózisú műtrágyát tartalmazott (0,1 m/m%; 0,5 m/m%; 1 m/m%; jelölésük BC0,1M; BC0,5M; BC1,0M), három esetben pedig a fent említett bioszén dózisokat egységesen 10 t/ha komposzttal egészítettük ki (BC0,1K; BC0,5K; BC1,0K). Ezek mellett pedig kialakítottunk egy bioszén és komposzt mentes abszolút kontroll (K) kezelést is. Kutatásunk során talajszondákkal monitoroztuk a talajnedvességtartalmának alakulását, valamint statikus kamrás mintavételi eljárással a talajlégzést is mértük a kezelésekben. A talajnedvesség éves átlagát nézve 1% bioszénnel és komposzttal kezelt parcella esetében a talaj nedvességtartalma nem szignifikáns mértékben növekedett a bioszén és komposzt mentes abszolút kontroll környezethez képest. Csapadékesemények alkalmával az 1% bioszenet és komposztot tartalmazó parcellában nőtt meg legjobban a talajnedvesség, illetve hasonlóan alakult a nedvességtartalom a 0,5% bioszénnel kezelt műtrágyás parcellában is. Csapadékesemények után az összes bioszenet és műtrágyát, illetve bioszenet és komposztot tartalmazó parcellában gyorsabban száradt ki a talaj a kontrollhoz képest. A csapadékban szegényebb, szárazabb időszak alkalmával egyedül az 1% bioszenet és komposztot tartalmazó kezelés talajnedvessége volt magasabb a kontrollhoz képest, a 0,5% bioszénnel és műtrágyával kezelt, komposzt mentes esetben a nedvesség hasonlóan alakult a kontrollhoz viszonyítva, az összes többi esetben jóval az alatt maradtak az értékek. Összességében megállapítható, hogy a komposztot tartalmazó talajok érzékenyebben reagáltak a csapadékra, a legjobb vízgazdálkodást az 1% bioszén és komposzt kezelés esetében értük el. Önmagában a bioszén nagy mennyiségű (1,0 m/m%) adagolása nem volt egyértelműen talajnedvesség-növelő hatású. A bioszén szén-dioxid forgalomra történő hatását a talajlégzés mérésével vizsgáltuk. A bioszénnel, valamint műtrágyával kezelt és a kontroll kezelések között csak néhány esetben volt különbség. A komposzttal kevert bioszén kezelések alkalmával hasonló eredményre jutottunk, mint a műtrágyával kevert bioszén esetében. Eredményeink alapján arra következtethetünk, hogy a talajlégzés nem függött a bioszén dózisától. A bioszén talajlégzésre gyakorolt hatása közvetett módon, a talajnedvesség befolyásolásán keresztül valósul meg, mivel bioszenet alkalmazva bizonyos esetekben a talajnedvesség emelkedett a kontrollhoz képest, ekkor a talajlégzés ugyancsak magasabb lett, amely jelenség a komposzttal kezelt esetekben jól megfigyelhető volt.

Til dokument

Sammendrag

The main environmental stressor of the Baltic Sea is elevated riverine nutrient loads, mainly originating from diffuse agricultural sources. Agricultural practices, intensities, and nutrient losses vary across the Baltic Sea drainage basin (1.75 × 106 km2 , 14 countries and 85 million inhabitants). Six “Soil and Water Assessment Tool” (SWAT) models were set up for catchments representing the major agricultural systems, and covering the different climate gradients in the Baltic Sea drainage basin. Four fertilizer application scenarios were run for each catchment to evaluate the sensitivity of changed fertilizer applications. Increasing sensitivity was found for catchments with an increasing proportion of agricultural land use and increased amounts of applied fertilizers. A change in chemical fertilizer use of ±20% was found to affect watershed NO3-N loads between zero effect and ±13%, while a change in manure application of ±20% affected watershed NO3-N loads between zero effect and −6% to +7%.

Til dokument

Sammendrag

Several mathematical models have been proposed for describing particle‐size distribution (PSD) data, but their characteristics and accuracy have not been investigated for the < 0.002, 0.002–0.05 and 0.05–2.0‐mm fractions separately. Therefore, the primary objective of this study was to examine the characteristics of various PSD models and to evaluate the accuracy of fitting to the entire PSD curve and to each of the three fractions separately. Thirty‐six PSD models were fitted to the experimental data of 160 soil samples from Iran. The beerkan estimation of soil transfer (BEST), Fredlund unimodal and bimodal, two‐ and three‐parameter Weibull, Rosin–Rammler and van Genuchten models provided the best fit to the experimental data of the three size fractions above, but with a different order of performance for the different fractions. For all textural fractions, the following models performed substantially less well than the other models: the offset‐non‐renormalized lognormal, simple lognormal, S‐curve, Schuhmann, Yang, Turcotte and Gompertz models. A comparison of the overall accuracy and simplicity of the models indicated that the BEST, two‐ and three‐parameter Weibull and Rosin–Rammler models provided the best fit to the experimental data for the entire curve, which is similar but does not correspond fully to the findings of a similar, earlier study. We found that the number of model parameters and the type of equation did not explain the models' fitting capabilities. We also found that the iterated function system (IFS) model performed better than the PSD models for all fractions. Comprehensive comparisons of PSD models will be of value to future model users, but it is important to note that such comparisons will remain dataset dependent. This is likely to continue until they are tested on a near‐infinite synthetic dataset that covers all possible data options.

Til dokument

Sammendrag

Soil, through its various functions, plays a vital role in the Earth’s ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. In this paper, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscaling techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.