Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2007
Forfattere
Kjell Andreassen Volkmar Timmermann Nicholas Clarke Ingvald Røsberg Halvor Solheim Wenche AasSammendrag
Det er ikke registrert sammendrag
Forfattere
Erik Trømborg Anders Nielsen Erling Thuen Odd Magne Harstad Torstein H. Garmo Harald Volden Øystein Holand Svein Jarle Horn Vincent Eijsink John Morken Petter H Heyerdahl Hanne Kathrine Sjølie Birger Solberg Lars Bakken Trine Aulstad Sogn Tormod Briseid Arne Grønlund Simen Gjølsjø Bjørn Langerud Nicholas ClarkeRedaktører
Hans Fredrik HoenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
2006
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
This document contains a summary of some techniques that can be used for CO2 monitoring considering a field laboratory site with an injection depth in the order of hundreds of meters. We will mainly focus on seismic: 3D and 4D surface seismic, acoustic image, multicomponent (MC) seismic, microseismic monitoring, boreholebased seismic, 4D cross-hole seismic surveying, 4D vertical seismic profiling (VSP); acoustic sonar bathimetry techniques; gravimetric techniques; electrical or electromagnetic techniques: electrical resistance tomography (ERT), ground penetrating radar, borehole radar, magnetotellurics; but geochemical techniques are included, like isotope methods, geochemical tracers, water chemistry. Finally, soil gas techniques and remote sensing methods area also described in this document. Storage of CO2 in geological formations is feasible on industrial scale. At the same time there is a requirement from Environmental and Health Authorities for documentation of subsurface behaviour of CO2. In this document we summarize different approaches for monitoring of subsurface migration, leakage and chemical reactions of CO2. We suggest performing studies at different scales including laboratory and field experiments. The methods we suggest has special emphasize on early detection of small amounts of CO2 migration. Of that reason the main focus of this report is on indirect geophysical monitoring (viz seismic, electrical and electromagnetic methods). To document subsurface reactions we also include geochemical methods. We suggest including ecological monitoring as an integrated part of the field experiments. Ecological monitoring will provide detection (or confirmation) of moderate CO2 leakage to the soil surface, and at the same time quantify effects on the vegetation of potentially leakages from geologically-stored CO2. In order to add value to the monitoring program, we recommend initiating simulation of monitoring experiments as early as possible in the project. Simulation of monitoring experiments should then be coupled to inverse flow simulations in order to optimize the monitoring program. Finally, monitoring of two specific field sites is suggested: The Brumunddal sandstone, and the Svelvik ridge in the outlet of the Drammensfjord. The preliminary budget for monitoring a field experiment on each side is 27.3 and 30.2 million NOK respectively. Recommendations for further work include: " Geological characterization of storage site and surrounding area. " Production of geological and numerical flow models of storage site and surrounding area. " Simulation of CO2 injection into the geological formation to identify potential migration and thus leakage points. This includes physical and chemical changes of the reservoir rock and surrounding strata. " Risk assessment to identify features, events and processes that might lead to the migration of CO2 and potential leakage. " Establish monitoring based on step 3 and 4 above. This includes monitoring of subsurface and surface area surrounding the storage site. " History matching of observations and simulation results (and if necessary modification of monitoring acquisitions).
Sammendrag
Inntill nylig har det vært liten oppmerksomhet om dyrket myr som kilde til CO2-utslipp og ingen systematisk kartlegging av C-tapet har blit foretatt. Beregneringer ved hjelp av tre forskjellige metoden tyder på at tapet kan være mellom 0,6 og 0,8 kg C m2/år, 2 - 4 million er tonn CO2/år, som er mellom 5 og 10 prosent av totalt menneskeskapt CO2-utslipp i Norge.
Sammendrag
Transient starch production is thought to exert a strong control over plant growth and response to elevated CO2. Here we tested this hypothesis with an experimentally-based mechanistic model in Arabidopsis thaliana. " Experiments were conducted on wild type (WT) of A. thaliana, starch-excess and starchless mutants under ambient- and elevated-CO2 conditions to determine parameters and validate the model. Central to the model, we experimentally demonstrated that dark respiration is directly proportional to soluble sugar concentration in A. thaliana leaves. " The model correctly predicted that: 1) mutant growth is about 20% of that of WT, and 2) absolute response of both mutants to elevated CO2 is an order of magnitude lower than that of the WT. " Our study demonstrates that effects of the diurnal starch cycle on growth can be captured by a fairly simple set of allocation equations. Our results further suggest that the maximum rate of leaf growth, and broadly the sink capacity, exert a strong control over the response to elevated CO2 of herbaceous plants such as A. thaliana.
Sammendrag
Lignin is a major plant litter compound. Due to its aromatic structure it is not easily decomposable by the soil microbial biomass and has for a long-time been considered to accumulate in soil. A recent study, however, indicated that lignin has a faster turnover than the bulk soil organic matter, suggesting that there is no long-term storage of the pristine lignin molecule in soil. Using a modelling approach we were able to show that more than 90 % of lignin deposited on the soil surface is transformed into non-lignin products. The aim of this study was to elucidate the forms of lignin derived carbon during a longterm laboratory incubation of 13C labelled lignin in soil. The conceptual approach included the extraction of lignin from a 13C labelled maize plant and its incubation under ideal conditions for 11 months. Our results show that the non-lignin products are mostly CO2, with few incorporation of lignin-derived carbon into the soil microbial biomass. We were able to detect a priming effect of soil organic matter induced by lignin addition. Analysis of the mineralisation kinetics suggested that the 13C labelled isolated lignin consisted of two compartments with different decomposition rates. One of the two compartments might be related to the presence of cellulose within the isolated lignin, which has been detected using 13C CPMAS NMR spectroscopy. Molecular analysis of lignin using chemolytical methods showed that lignin becomes more accessible to chemical attack in the course of incubation. Higher yields of lignin monomers were obtained after 4 month using cupric oxide oxidation as well as thioacidolysis. These results indicate that lignin degradation in soil can hardly be separated from cellulose decomposition
Forfattere
Daniel Rasse Marie-France Dignac Bahri Haithem Cornelia Rumpel Mariotti Andre Claire ChenuSammendrag
Lignin har lenge vært antatt å være en viktig kilde for karbon i jord på grunn av sin lite nedbrytbare polyfenol-struktur i forhold til andre grupper organisk materiale. Studier av omsetning av lignin har imidlertid vist motstridende resultater og de fleste tyder på at en stor del av lignin fra planterester brytes ned i løpet av ett år etter innblanding i jord. Vi har her foreslått en to-pool modell hvor lignin i ferskt plantemateriale (Lp) enten kan opptre delvis beskyttet i jord mot videre nedbryting (Ls) eller blir omdannet til ikke-lignin produkter. Data til kalibrering av modellen ble skaffet ved hjelp av isotopanalyse av lignin spesifikk 13C fra en serie med 0-9 års ensidig maisdyrking etter hvete på en lettleire i Frankrike. Lignin ble kvantifisert ved CuO-oksidasjon som VSC-lignin, det vil si som summen av fenoltypene vanillil (V), syringyl (S) og coumaryl (C). Kalibreringene indikerte at Lp har en omsetningshastighet raskere enn ett år og at 92 % ble mineralisert til CO2 eller omdannet til andre ikke lignin-produkter, mens bare 8 % tilhørte Ls-fraksjonen. Estimert omsetningshastighet av Ls-fraksjonen var 0,05 år-1. Modellen tydet også på at om lag halvparten av Lp ikke var målt fordi det var blitt fjerne gjennom siktingen av prøven (5 mm). Som konklusjon, modellen tydet på at kjemisk bertandighet ikke er tilstrekkelig alene til å forklare omsetningen av VSC-lignin i jord, og at den mest relevante mekanismen funksjonelt synes å være overgang av VSC-ligning molekyler og fragmenter fra nedbrutt plantevev til jord-beskyttede fraksjoner.
Forfattere
Daniel Rasse Marie-france Dignac Haithem Bahri Cornelia Rumpel André Mariotti Claire ChenuSammendrag
Lignin has long been suspected a major source of stable carbon in soils notably because of the recalcitrant nature of its polyphenolic structure relative to other families of plant molecules. However, lignin turnover studies have produced conflicting results, most of them suggesting that large proportions of plant-residue lignin decompose within a year of incorporation into soils. Here, we propose a two-reservoir model where lignin in undecomposed plant residue (Lp) can either reach soil fractions where it is somewhat protected from further decomposition (Ls) or is transformed to non-lignin products. Model calibration data were obtained through compound-specific 13C isotopic analyses conducted in a zero- to nine-year chronosequence of maize monoculture after wheat in a temperate loam soil of the Paris basin. Lignin was quantified by CuO oxidation as VSC-lignin, i.e., the sum of vanillil- (V), syringyl- (S) and coumaryl-type (C) phenols. Model calibrations indicate that Lp has a turnover rate faster than one year and that 92% is mineralized as CO2 or transformed into other non-lignin products, while only 8% reaches the Ls fraction. Estimated turnover rate of the Ls fraction was 0.05 yr-1. The model also suggested that about half of Lp was not measured because it had been excluded from the samples in the process of sieving at 5 mm. In conclusion, the model indicates that chemical recalcitrance alone is not sufficient to explain VSC-lignin turnover in soils, and that, functionally, the most relevant mechanism appears to be the transfer of VSC-lignin molecules and fragments from decomposing plant tissues to soil-protected fractions.