Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document

Abstract

The adoption of the European Green Deal will limit acaricide use in high value crops like raspberry, to be replaced by biological control and other alternative strategies. More basic knowledge on mites in such crops is then necessary, like species, density, and their role as vectors of plant diseases. This study had four aims, focusing on raspberry leaves at northern altitude: (1) identify mite species; (2) study mite population densities; (3) investigate mite intra-plant distribution; (4) investigate co-occurrence of phytophagous mites, raspberry leaf blotch disorder and raspberry leaf blotch virus (RLBV). Four sites in south-eastern Norway were sampled five times. Floricanes from different parts of the sites were collected, taking one leaf from each of the upper, middle, and bottom zones of the cane. Mites were extracted with a washing technique and processed for species identification and RLBV detection. Mites and leaves were tested for RLBV by reverse transcription polymerase chain reaction (RT-PCR) with virus-specific primers. Phytophagous mites, Phyllocoptes gracilis, Tetranychus urticae, and Neotetranychus rubi, and predatory mites, Anystis baccarum and Typhlodromus (Typhlodromus) pyri were identified. All phytophagous mites in cultivated raspberry preferred the upper zone of floricanes, while in non-cultivated raspberry, they preferred the middle zone. The presence of phytophagous mites did not lead to raspberry leaf blotch disorder during this study. RLBV was detected in 1.3% of the sampled plants, none of them with leaf blotch symptoms, and in 4.3% of P. gracilis samples, and in some spider mite samples, implying that Tetranychids could also be vectors of RLBV.

Abstract

The fall armyworm, Spodoptera frugiperda, situation in Africa remains a priority threat despite significant efforts made since the first outbreaks in 2016 to control the pest and thereby reduce yield losses. Field surveys in Benin and Mali reported that approximately one-week post-emergence of maize plants, the presence of fall armyworm (egg/neonates) could be observed in the field. Scouting for fall armyworm eggs and neonates is, however, difficult and time consuming. In this study, we therefore hypothesized that the optimum timeframe for the fall armyworm female arriving to lay eggs in sown maize fields could be predicted. We did this by back-calculating from interval censored data of egg and neonates collected in emerging maize seedlings at young leaf developmental stage. Early time of ovipositing fall armyworm after sowing was recorded in field experiments. By using temperature-based models to predict phenological development for maize and fall armyworm, combined with analytical approaches for time-to-event data with censored status, we estimated that about 210 accumulated Degree Days (DD) is needed for early detection of neonate larvae in the field. This work is meant to provide new insights on timely pest detection and to guide for precise timing of control measures.

To document

Abstract

Invasive pests and plant pathogens pose a significant threat to ecosystems and economies worldwide, prompting the need of anticipatory strategies. Preventing their introduction by detection at the ports of entry has been proven extremely difficult. This review explores the potential of biogenic volatile detection as a reliable preventive solution. It underscores the importance of early detection and rapid response as integral components of effective invasive pest management, and it discusses the limitations of current control measures and the increasing globalization that facilitates the spread of pests and pathogens. Through a synthesis of existing literature, this review analyzes the Volatile Organic Compound (VOC) emissions in five invasive model species: three insects, Halyomorpha halys, Spodoptera frugiperda, Helicoverpa armigera, a nematode, Bursaphelenchus xylophilus, and an oomycete, Phytophthora ramorum. The review focuses on the specific volatiles, released by both the invasive organisms and the infested host plants. If available, the volatiles emitted from similar species were considered for comparison. Ultimately, this review highlights specific pest volatile and shared Herbivore Induced Plant Volatiles (HIPVs) as a reliable and innovative solution in pest detection. If possible, candidate compounds are provided, whilst the lack of some emphasizes the urge of expanding the information available.