Pål Thorvaldsen

Research Scientist

(+47) 406 21 869
pal.thorvaldsen@nibio.no

Place
Trondheim

Visiting address
Klæbuveien 153, bygg C 1.etasje, 7031 Trondheim

To document

Abstract

In Europe, over a third of the agricultural area is grass meadows used for livestock grazing and fodder production. Grass meadows provide a food source for wild ungulates causing human-wildlife conflicts due to forage removal. Few experimental studies have quantified biomass loss with enough replicates to determine how surrounding environments influences level of biomass removal. Using an exclosure experiment on 57 grassland meadows over five years at the northwest coast of Norway covering 10 650 km2, we quantified biomass removal by red deer (Cervus elaphus L.) and how environmental factors impacted biomass loss (Study 1). Furthermore, we examined development of biomass loss and crude protein concentration in five fields throughout the growing season (Study 2). The average predicted biomass loss to red deer grazing was 16% for the first harvest, and 7.3% for the second harvest (Study 1). Biomass loss increased with red deer density from 0% at the lowest density (0.6 red deer harvested/km2) to 31% at the highest density (4 red deer harvested/km2). Biomass loss increased from 12% to 32.8% as terrain ruggedness index (TRI) rose from 2.1 to 7.1. Absolute biomass loss increased towards time of grass harvest (Study 2). Crude protein concentration was higher in unfenced plots during the period before first harvest, but not between first and second harvest (Study 2). The quantification of biomass removal at a large spatial scale over several years in this study provides a better understanding of factors causing variation in losses.

To document

Abstract

Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.