Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Abstract
No abstract has been registered
Authors
Alice Budai Anders Aas Daniel Rasse Erik J. Joner Pierre-Adrien Rivier Simon Weldon Thiago InagakiAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Paal Krokene Beatrix Alsanius Jorunn Børve Daniel Flø Bjørn Arild Hatteland Erik J. Joner Lawrence Richard Kirkendall Christer Magnusson Mogens Nicolaisen Line Nybakken Johan Stenberg Selamawit Tekle Gobena Kristine Bakke Westergaard Sandra A. I. WrightAbstract
Background: The Norwegian Environment Agency (Miljødirektoratet) and the Norwegian Food Safety Authority (Mattilsynet) tasked the Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) to provide a scientific opinion identifying which growing media associated with import of live plants pose the greatest risk of introducing non-native species to Norway. VKM was also asked to assess how effective various risk-reducing measures are to prevent such introductions. In this report, we focus on the introduction of plant pests. Trade in plants for planting is a large and complex international business where live plants are grown in some areas and shipped to other areas where they are intended to be planted or replanted. Traded plants are usually shipped with associated growing media. Long-lived plants, like trees and bushes, may be imported to the EU (e.g., from Asia) and traded through different countries for several years of on-growth before being shipped to Norway. Long production cycles, partly in outdoor nurseries, suggest that the import of live plants with soil or other growing media into Norway comes with a high probability of introducing plant pests. Such pests could cause severe harm to Norwegian plant health and impact both agriculture and natural ecosystems. In this scientific opinion, we describe the most used growing media and assess the risks associated with these. We further evaluate what types of plants and which exporting countries are considered to pose the highest risks for introducing plant pests. Finally, we describe different risk reduction options and assess the effectiveness of current Norwegian regulations as a tool to reduce risks. Altogether, this assessment provides a comprehensive overview of the potential risks involved in importing soil and other growing media associated with plants for planting and of possible strategies for mitigating these risks. Key findings: Growing media constituents: The most used organic growing media constituents are peat, wood fiber, and compost, but a great array of other constituents is also used. In this report, we have focused on organic constituents, as these are frequently colonized by living organisms when sourced and may support pest species by acting as a food source or as a sheltering environment that provides water, oxygen, and other crucial factors for pest survival. Growing media as a plant pest carrier: Even though most growing media constituents initially are sterile or free from any plant pests, the processes of mixing, potting, plant cultivation, transport, and storage can easily allow contamination by and propagation of pests underway from a primary source to a customer in Norway. Many organisms can colonize and survive in growing media under conditions primarily designed to keep plants alive. Growing media thus poses a risk of introducing plant pests to Norway when such media are imported together with live plants. Identified pest species: Organisms that can arrive with the import of live plants and associated growing media will include organisms that are not plant pests, known plant pests, regulated pests, and species that may be problematic even though they are not currently listed as quarantine pests. By screening two international databases (CABI, 2022; EPPO, 2024b) and performing a structured literature search, we identified a total of 651 pest species, most of which are not present in Norway, that may be associated with plants imported from Europe with soil or other growing media (154 species from CABI, 87 from EPPO, and 410 from the literature search). Due to time limitations, only 89 species were assessed for their association with soil and growing media. This evaluation included 20 species from CABI, 24 from EPPO, and 45 from the literature search, as detailed in Appendix 5. Climate suitability analyses were carried out .........
Authors
Alice Budai Daniel Rasse Thomas Cottis Erik J. Joner Vegard Martinsen Adam O'Toole Hugh Riley Synnøve Rivedal Ievina Sturite Gunnhild Søgaard Simon Weldon Samson ØpstadAbstract
Carbon content is a key property of soils with importance for all ecosystem functions. Measures to increase soil carbon storage are suggested with the aim to compensate for agricultural emissions. In Norway, where soils have relatively high carbon content because of the cold climate, adapting management practices that prevent the loss of carbon to the atmosphere in response to climate change is also important. This work presents an overview of the potential for carbon sequestration in Norway from a wide range of agricultural management practices and provides recommendations based on certainty in the reported potential, availability of the technology, and likelihood for implementation by farmers. In light of the high priority assigned to increased food production and degree of self-sufficiency in Norway, the following measures were considered: (1) utilization of organic resources, (2) use of biochar, (3) crop diversification and the use of cover crops, (4) use of plants with larger and deeper root systems, (5) improved management of meadows, (6) adaptive grazing of productive grasslands (7) managing grazing in extensive grasslands, (8) altered tillage practices, and (9) inversion of cultivated peat with mineral soil. From the options assessed, the use of cover crops scored well on all criteria evaluated, with a higher sequestration potential than previously estimated (0.2 Mt CO2-equivalents annually). Biochar has the largest potential in Norway (0.9 Mt CO2-equivalents annually, corresponding to 20% of Norwegian agricultural emissions and 2% of total national emissions), but its readiness level is not yet achieved despite interest from industry to apply this technology at large scale. Extensive grazing and the use of deep-rooted plants also have the potential for increasing carbon storage, but there is uncertainty regarding their implementation and the quantification of effects from adapting these measures. Based on the complexities of implementation and the expected impacts within a Norwegian context, promising options with substantial payoff are few. This work sheds light on the knowledge gaps remaining before the presented measures can be implemented.
2023
Abstract
No abstract has been registered
Abstract
No abstract has been registered