Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Abstract
No abstract has been registered
Authors
Min-Rui Wang Zhibo Hamborg Jiří Zámečník Alois Bilavčík Dag-Ragnar Blystad Sissel Haugslien Qiao-Chun WangAbstract
The present study described a droplet-vitrification cryopreservation for shoot tips of shallot (Allium cepa var. aggregatum), a small bulb onion. Shoot tips taken from in vitro stock shoots were precultured with 0.3 M and 0.5 M of sucrose, with 1 day for each concentration. Precultured shoot tips were treated with a loading solution containing 2 M glycerol and 0.6 M sucrose for 20 min and then exposed to plant vitrification solution 3 (PVS3) at 24 °C for 3 h of dehydration. Following exposure to PVS3, shoot tips were moved onto 5.0 μl PVS3 droplets on aluminum foil strips, followed by direct immersion into liquid nitrogen for 1 h. Frozen shoot tips were thawed by incubation in liquid MS medium containing 1.2 m sucrose for 20 min at room temperature, and then post-thaw cultured for shoot regrowth. Exposure of the shoot tips to PVS3 produced shoot regrowth (58%). Differential scanning calorimetry (DSC) detected 1.8% of freezable water in the shoot tips that had been dehydrated by PVS2, and no freezable water in those by PVS3 treatment. Exposure to PVS3 provided a broader safe temperature range (− 196 °C to − 88 °C), compared to that (− 196 °C to − 116 °C) of PVS2, for cryopreserved samples. Histological observations found that PVS3 dehydration allowed many cells in the apical dome and in the leaf primordia to survive following freezing in LN, while PVS2 dehydration resulted in much fewer surviving cells in the apical dome. The droplet-vitrification cryopreservation produced 56%, 72% and 32% shoot regrowth in cryopreserved shoot tips taken from in vitro shoots, adventitious buds regenerated from stem discs and field-grown bulbs, respectively. Advantages and disadvantages of the use of different source explants for cryopreservation were discussed. The droplet-vitrification cryopreservation produced 45% and 70% shoot regrowth in the additional two shallot genotypes ‘Kverve’ and ‘Lunteviga’. The results obtained in this study provide technical supports for setting-up cryo-bankings of genetic resources of shallots and other Allium species.
Abstract
No abstract has been registered
Authors
Andreas Treu Katrin Zimmer Christian Brischke Erik Larnøy Lone Ross Foued Aloui Simon M. Cragg Per-Otto Flæte Miha Humar Mats Westin Luisa Borges John WilliamsAbstract
Timber structures in marine applications are often exposed to severe degradation conditions caused by mechanical loads and wood-degrading organisms. This paper presents the use of timber in marine environments in Europe from a wood protection perspective. It discusses the use of wood in coastline protection and archeological marine wood, reviews the marine borer taxa in European waters, and gives an overview of potential solutions for protection of timber in marine environments. Information was compiled from the most relevant literature sources with an emphasis on new wood protection methods; the need for research and potential solutions are discussed. Traditionally, timber has been extensively utilized in a variety of marine applications. Although there is a strong need for developing new protection systems for timber in marine applications, the research in this field has been scarce for many years. New attempts to protect timber used in marine environments in Europe have mainly focused on wood modification and the use of mechanical barriers to prevent colonization of marine wood borers. The importance of understanding the mechanisms of settlement, migration, boring, and digestion of the degrading organisms is key for developing effective systems for protecting timber in marine environments.
Authors
Kirsten TørresenAbstract
No abstract has been registered
Authors
Gudbrand Lien Ming Su LavikAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Ingunn M. VågenAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
EDU-ARCTIC is an open-schooling project, funded by the EU for the years 2016-2019. The main aim is to attract young people (13-20 years old) to the natural sciences. The project is using Arctic to illustrate how research are carried out and put together in order to reveal what is happening in Arctic and how Europe ins influencing Arctic and how Arctic is influencing Europe. To achieve these goals, EDU-ARCTIC uses innovative online tools like webinars provided by scientists, Polarpedia (an online encyclopaedia) of scientific terms used in the EDU ARCTIC, as well as the monitoring system that is an open-access database including app for motivation on field registration. In addition, the EDU-ARCTIC offers Arctic Competitions, where pupils submit their idea for a science project as an essay, a poster or a video. During a three-step evaluation, a few lucky winners get the possibility to join scientists on expeditions to polar research stations during the summer. For school curricula and motivation of pupils, practical hands-on activities performed by school pupils themselves by using own senses stimulate to faster learning and cognition. The learning and practicing of observation increase the understanding of complex conditions occurring in nature, related to biology, ecology, ecosystems functioning, physics, atmospheric chemistry etc. For this, the EDU-ARCTIC project developed the monitoring system. All schools in Europe are invited to participate in a meteorological and phenological observation system in the schools’ surroundings, to report these observations on the web-portal and to have access to interesting accumulated data. The schools and pupils become a part of a larger effort to gain a holistic understanding of global environmental issues. The students may learn to act as scientific eyes and ears in the field. No special equipment is needed. Reporting of observations should be made once a week in the monitoring system at the EDU–ARCTIC web-portal. A manual and a field guide on how to conduct observations and report are available through the web. Teachers may download reports containing gathered information and use them for a wide variety of subjects, including biology, chemistry, physics and mathematics. Meteorological parameters are requested reported as actual values: air temperature, cloud cover, precipitation, visibility reduction and wind force, in all 19 parameters. It is also asking for reports on meteorological and hydrological phenomena, which occurred within the previous week: like lightning, extreme and other atmospheric phenomena, ice on lakes and rivers and snow cover, in all 23 parameters. The monitoring system is also include biological field observations, including plants, like Birch, Lilac, Bilberry in all 26 parameters. Then occurrence of first individual of five species of insects like Bumble bee, Mosquito, Ant and butterfly, and then registration of first appearance of the bird species Arctic tern, Common Cuckoo, White wagtail and Crane. An app for the monitoring system has been developed in order to engage pupils more by making it more comprehensive to register the meteorology and the phenophases. Further, special webinars and polarpedia entries are developed to strengthen the monitoring system. The web-portal is open source but password access is needed in order to enter registrations. keywords: observation system, natural science, interdisciplinary, stem.