Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document

Abstract

1. Sap flow measurements are fundamental to understanding water use in trees and could aid in predicting climate change effects on forest function. Deriving knowledge from such measurements requires empirical calibrations and upscaling methods to translate thermometric recordings to tree water use. Here, we developed a user-friendly open-source application, the Sap Flow Analyzer (SFA), which estimates sap flow rates and tree water use from the heat field deformation (HFD) instruments. 2. The SFA incorporates four key features to ensure maximum accuracy and reproducibility of sap flow estimates: diagnosis diagrams to assess data patterns visually, regression models implemented to increase accuracy when estimating K (the main HFD parameter), three approaches to upscale sap flow rates to whole-tree water use and visualization of the input parameters' uncertainty. Thirteen participants were given three raw datasets and assigned data processing tasks using the SFA user guide, from estimating sapwood depth to scaling sap flow rates to whole-tree water use to assess the reproducibility and applicability of the SFA. 3. Participants' results were reasonably consistent and independent of their background in using the SFA, R, or HFD method. The results showed lower variability for high flow rates (SD: mean 1% vs. 10%). K estimates and sapwood depth differentiation were the primary sources of variability, which in turn was mainly caused by the user's chosen scaling method. 4. The SFA provides an easy way to visualize and process sap flow and tree water use data from HFD measurements. It is the first free and open software tool for HFD users. The ability to trace analysis steps ensures reproducibility, increasing transparency and consistency in data processing. Developing tools such as the SFA and masked trials are essential for more precise workflows and improved quality and comparability of HFD sap flow datasets.

To document

Abstract

Vitenskapskomiteen for mat og miljø (VKM) har oppdatert et metodedokument for helse og miljørisikovurderinger av plantevernmidler. Målet med oppdateringen er å gjenspeile gjeldende regelverk og praksis, og sikre kvaliteten på fremtidige risikovurderinger utført av faggruppen for plantevernmidler i VKM. Det forrige metodedokumentet er fra 2012, og oppdateringen var nødvendig for å tilpasse metodene til nytt EU-regelverk for plantevernmidler, og for å innarbeide nye datakrav og retningslinjer for plantevernmidler og biocider. Ved å oppdatere metodedokumentet, ønsket faggruppen å sikre at risikovurderingene de leverer er i tråd med gjeldende regelverket og vitenskapelig kunnskap. ​ ​Viktige endringer Dokumentet er oppdatert med henvisninger til nye forskrifter og veiledninger, om for eksempel biocider, nye typer plantevernmidler, og forenklet godkjenning/risikovurdering for mikrobielle stoffer. Det nye dokumentet inneholder også veiledning om fareidentifikasjon av stoffer med hormonforstyrrende egenskaper, alternative metoder for å redusere toksikologisk testing hos dyr, og vurdering av ikke-kostholdeksponering av plantevernmidler. Dokumentet inneholder oppdatert informasjon om metodikk knyttet til vurdering av plantevernmidlers egenskaper og skjebne i miljøet, inkludert norske jord- og klimaforhold, renseanlegg og drikkevannsrenseprosesser. Veiledning om risikovurdering for bier og andre insekter, akvatiske organismer, fugler, pattedyr og andre vertebrater, samt meitemark og andre jordlevende organismer, er også oppdatert. Innen flere av feltene er eller vil det bli etablert spesifikke beskyttelsesmål og trinnvise risikovurderinger. Samlet sett fungerer det oppdaterte metodedokumentet som en referanse for VKMs risikovurderingsarbeid for plantevernmidler, og sikrer at fremtidige vurderinger gjennomføres i samsvar med gjeldende regelverk og vitenskapelig kunnskap. ​ Metode VKM har benyttet en semi-systematisk tilnærming, ved å utarbeide et arbeidsdokument for innhenting og sammenstilling av nødvendig informasjon om nye datakrav fra gjeldende regelverk for plantevernmidler og biocider i EU. Dokumentet er godkjent av VKMs faggruppe for plantevernmidler.

Abstract

Hurdal (NO-Hur) is a recently labelled ICOS class 2 station in Southeast Norway. It represents a typical southern boreal forest of medium productivity, dominated by old Norway spruce (average tree height: 25 m, ages: up to 100 years) with some pine and broadleaved trees. The eddy covariance technique is used to measure CO2 fluxes on a 42 m tower since 2021 . The measurements have an average footprint area of approximately 63 ha. In 2023, the region experienced an unusual dry spring and then an extraordinary flood in August. Both events showed significant impact on the Net Ecosystem Exchange (NEE) and heat fluxes. The station is also equipped with automatic dendrometers and sap flow devices on the dominant spruce trees, allowing us to investigate the impact of these events at the individual tree scale. We will present tree growth and transpiration flux at different temporal scales (from sub-daily to seasonal), and relate these single tree observations with environmental variables, ecosystem-level NEE and evapotranspiration using phase synchronization analysis. These observational data will yield insights into carbon and water processes of a boreal forest at different scales in response to multiple disturbances.

Abstract

To facilitate nutrient management and the use of manure as a feedstock for biogas production, manure is often separated into a solid and a liquid fraction. The former fraction is usually high in P and low in N, so when incorporated in the soil as fertilizer, it needs to be supplemented by N from, e.g., mineral fertilizers or nitrogen-fixing species. To explore strategies to manage N with solid-separated manure, we examined how the amount of digestate and the N:P ratio of pig digestate, i.e., manure that had partially undergone anaerobic digestion, affected the productivity of Westerwolds ryegrass and red clover in a pot experiment with one soil which was rich and another which was poor in plant nutrients. The soil and plant species treatments were combined with four doses of digestate, which gave plant available phosphorus (P) concentrations of 2, 4, 8, or 16 mg P100 g−1 soil. Ammonium nitrate was dosed to obtain factorial combinations of digestate amount and N:P ratios of 1.8, 4, 8, and 16. Clover was harvested once at the beginning of flowering (15 weeks after seeding), while Westerwolds ryegrass was allowed to regrow three times after being cut at the shooting stage (in total, 4 cuts, 6, 9, 12, and 15 weeks after seeding). Ryegrass yield increased by up to 2.9 times with digestate dosage. Interactions with the N:P ratio and soil type were weak. Hence, the effect of increasing the N:P ratio was additive across digestate dosages. Red clover biomass also increased by up to 39% with digestate dosage. Residual nutrients in the soil after red clover cultivation were affected by the initial differences in soil characteristics but not by digestate treatment or biomass of harvested red clover. A targeted N management is required to benefit from the P-rich digestate in grass cultivation, while the long-term effects of red clover culture on N input need further investigation.

To document

Abstract

Black soils, which play an important role in agricultural production and food security, are well known for their relatively high content of soil organic matter (SOM). SOM has a significant impact on the sustainability of farmland and provides nutrients for plants. Hyperspectral imaging (HSI) in the visible and near-infrared region has shown the potential to detect soil nutrient levels in the laboratory. However, using portable spectrometers directly in the field remains challenging due to variations in soil moisture (SM). The current study used spectral data captured by a handheld spectrometer outdoors to predict SOM, available nitrogen (AN), available phosphorus (AP) and available potassium (AK) with different SM levels. Partial least squares regression (PLSR) models were established to compare the predictive performance of air-dried soil samples with SMs around 20%, 30% and 40%. The results showed that the model established using dry sample data had the best performance (RMSE = 4.47 g/kg) for the prediction of SOM, followed by AN (RMSE = 20.92 mg/kg) and AK (RMSE = 22.67 mg/kg). The AP was better predicted by the model based on 30% SM (RMSE = 8.04 mg/kg). In general, model performance deteriorated with an increase in SM, except for the case of AP. Feature wavelengths for predicting four kinds of soil properties were recommended based on variable importance in the projection (VIP), which offered useful guidance for the development of portable hyperspectral sensors based on discrete wavebands to reduce cost and save time for on-site data collection.