Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

Several studies have looked at how individual environmental factors influence needle morphology in conifer trees, but interacting effects between drought and canopy position have received little attention. In this study, we characterized morphological responses to experimentally induced drought stress in sun exposed and shaded current-year Norway spruce needles. In the drought plot trees were suffering mild drought stress, with an average soil water potential at 50 cm depth of -0.4 MPa. In general, morphological needle traits had greater values in sun needles in the upper canopy than in shaded needles in the lower canopy. Needle morphology 15 months after the onset of drought was determined by canopy position, as only sun needle morphology was affected by drought. Thus, canopy position was a stronger morphogenic factor determining needle structure than was water availability. The largest influence of mild drought was observed for needle length, projected needle area and total needle area, which all were reduced by ~27% relative to control trees. Needle thickness and needle width showed contrasting sensitivity to drought, as drought only affected needle thickness (10% reduction). Needle dry mass, leaf mass per area and needle density were not affected 15 months after the onset of mild drought. Our results highlight the importance of considering canopy position as well as water availability when comparing needle structure or function between conifer species. More knowledge about how different canopy parts of Norway spruce adapt to drought is important to understand forest productivity under changing environmental conditions.

To document

Abstract

Standardized tools are needed to identify and prioritize the most harmful non-native species (NNS). A plethora of assessment protocols have been developed to evaluate the current and potential impacts of non-native species, but consistency among them has received limited attention. To estimate the consistency across impact assessment protocols, 89 specialists in biological invasions used 11 protocols to screen 57 NNS (2614 assessments). We tested if the consistency in the impact scoring across assessors, quantified as the coefficient of variation (CV), was dependent on the characteristics of the protocol, the taxonomic group and the expertise of the assessor. Mean CV across assessors was 40%, with a maximum of 223%. CV was lower for protocols with a low number of score levels, which demanded high levels of expertise, and when the assessors had greater expertise on the assessed species. The similarity among protocols with respect to the final scores was higher when the protocols considered the same impact types. We conclude that all protocols led to considerable inconsistency among assessors. In order to improve consistency, we highlight the importance of selecting assessors with high expertise, providing clear guidelines and adequate training but also deriving final decisions collaboratively by consensus.

Abstract

Infections of Neonectria ditissima, the cause of European fruit tree canker, may be initiated during propagation. In a survey of 19 commercial apple orchards in southern Norway in the year of planting or the following year, the graft-union area of 15,270 trees was examined. The disease was found in 53% of the orchards, at a low incidence (<10%) with two exceptions (13 and 42%). Scion wood from mother trees with no, a few or several cankers were used to propagate trees that were surveyed for up to 38 months. In total 20 out of 1116 (1.8%) trees developed canker. The higher the number of cankers was on the mother trees, the higher was the number of trees developing canker after grafting. Infections developed on both cultivars (Discovery, Summerred) and all three rootstocks (Antonovka, B9, M9), but more so on grafted than T-budded trees, and more in 2015 than in 2014. When the scion wood was inoculated at the time of T-budding or grafting, disease development went faster and to a higher incidence on T-budded (94%) than on grafted trees (50%). Dipping the scion wood end in a spore suspension prior to grafting resulted in more infections than when a suspension droplet was placed on the bud and bark surface of the scion wood after grafting. The present investigation documents that scion wood may harbour inoculum of N. ditissima. Furthermore, infections may be initiated at time of propagation, and management practices of both scion wood production and nurseries should encounter that fact.