Sammendrag

Background The age of forest stands is critical information for forest management and conservation, for example for growth modelling, timing of management activities and harvesting, or decisions about protection areas. However, area-wide information about forest stand age often does not exist. In this study, we developed regression models for large-scale area-wide prediction of age in Norwegian forests. For model development we used more than 4800 plots of the Norwegian National Forest Inventory (NFI) distributed over Norway between latitudes 58° and 65° N in an 18.2 Mha study area. Predictor variables were based on airborne laser scanning (ALS), Sentinel-2, and existing public map data. We performed model validation on an independent data set consisting of 63 spruce stands with known age. Results The best modelling strategy was to fit independent linear regression models to each observed site index (SI) level and using a SI prediction map in the application of the models. The most important predictor variable was an upper percentile of the ALS heights, and root mean squared errors (RMSEs) ranged between 3 and 31 years (6% to 26%) for SI-specific models, and 21 years (25%) on average. Mean deviance (MD) ranged between − 1 and 3 years. The models improved with increasing SI and the RMSEs were largest for low SI stands older than 100 years. Using a mapped SI, which is required for practical applications, RMSE and MD on plot level ranged from 19 to 56 years (29% to 53%), and 5 to 37 years (5% to 31%), respectively. For the validation stands, the RMSE and MD were 12 (22%) and 2 years (3%), respectively. Conclusions Tree height estimated from airborne laser scanning and predicted site index were the most important variables in the models describing age. Overall, we obtained good results, especially for stands with high SI. The models could be considered for practical applications, although we see considerable potential for improvements if better SI maps were available.

Til dokument

Sammendrag

Multi-temporal Sentinel 2 optical images and 3D photogrammetric point clouds can be combined to enhance the accuracy of timber volume models on large spatial scale. Information on the proportion of broadleaf and conifer trees improves timber volume models obtained from 3D photogrammetric point clouds. However, the broadleaf-conifer information cannot be obtained from photogrammetric point clouds alone. Furthermore, spectral information of aerial images is too inconsistent to be used for automatic broadleaf-conifer classification over larger areas. In this study we combined multi-temporal Sentinel 2 optical satellite images, 3D photogrammetric point clouds from digital aerial stereo photographs, and forest inventory plots representing an area of 35,751 km2 in south-west Germany for (1) modelling the percentage of broadleaf tree volume (BL%) using Sentinel 2 time series and (2) modelling timber volume per hectare using 3D photogrammetric point clouds. Forest inventory plots were surveyed in the same years and regions as stereo photographs were acquired (2013–2017), resulting in 11,554 plots. Sentinel 2 images from 2016 and 2017 were corrected for topographic and atmospheric influences and combined with the same forest inventory plots. Spectral variables from corrected multi-temporal Sentinel 2 images were calculated, and Support VectorMachine (SVM) regressions were fitted for each Sentinel 2 scene estimating the BL% for corresponding inventory plots. Variables from the photogrammetric point clouds were calculated for each inventory plot and a non-linear regression model predicting timber volume per hectare was fitted. Each SVMregression and the timber volume model were evaluated using ten-fold cross-validation (CV). The SVMregression models estimating the BL% per Sentinel 2 scene achieved overall accuracies of 68%–75% and a Root Mean Squared Error (RMSE) of 21.5–26.1. The timber volumemodel showed a RMSE% of 31.7%, amean bias of 0.2%, and a pseudo-R2 of 0.64. Application of the SVMregressions on Sentinel 2 scenes covering the state of Baden-Württemberg resulted in predictions of broadleaf tree percentages for the entire state. These predicted values were used as additional predictor in the timber volume model, allowing for predictions of timber volume for the same area. Spatially high-resolution information about growing stock is of great practical relevance for forest management planning, especially when the timber volume of a smaller unit is of interest, for example of a forest stand or a forest districtwhere not enough terrestrial inventory plots are available to make reliable estimations. Here, predictions from remote-sensing based models can be used. Furthermore, information about broadleaf and conifer trees improves timber volume models and reduces model errors and, thereby, prediction uncertainties.