Abstract

The number of people affected by snow avalanches during recreational activities has increased over the recent years. An instrument to reduce these numbers are improved terrain classification systems. One such system is the Avalanche Terrain Exposure Scale (ATES). Forests can provide some protection from avalanches, and information on forest attributes can be incorporated into avalanche hazard models such as the automated ATES model (AutoATES). The objectives of this study were to (i) map forest stem density and canopy-cover based on National Forest Inventory and remote sensing data and, (ii) use these forest attributes as input to the AutoATES model. We predicted stem density and directly calculated canopy-cover in a 20 Mha study area in Norway. The forest attributes were mapped for 16 m × 16 m pixels, which were used as input for the AutoATES model. The uncertainties of the stem number and canopy-cover maps were 30% and 31%, respectively. The overall classification accuracy of 52 ski-touring routes in Western Norway with a total length of 282 km increased from 55% in the model without forest information to 67% when utilizing canopy cover. The F1 score for the three predicted ATES classes improved by 31%, 9%, and 6%.

Abstract

This study aimed at estimating total forest above-ground net change (ΔAGB; Gg) over five years (2014–2019) based on model-assisted estimation utilizing freely available satellite imagery. The study was conducted for a boreal forest area (approx. 1.4 Mha) in Norway where bi-temporal national forest inventory (NFI), Sentinel-2, and Landsat data were available. Biomass change was modelled based on a direct approach. The precision of estimates using only the NFI data in a basic expansion estimator was compared to four different alternative model-assisted estimates using 1) Sentinel-2 or Landsat data, and 2) using bi- or uni-temporal remotely sensed data. We found that spaceborne optical data improved the precision of the purely field-based estimates by a factor of up to three. The most precise estimates were found for the model-assisted estimation using bi-temporal Sentinel-2 (standard error; SE = 1.7 Gg). However, the decrease in precision when using Landsat data was small (SE = 1.92 Gg). We also found that ΔAGB could be precisely estimated when remotely sensed data were available only at the end of the monitoring period. We conclude that satellite optical data can considerably improve ΔAGB estimates, when repeated and coincident field data are available. The free availability, global coverage, frequent update, and long-term time horizon make data from programs such as Sentinel-2 and Landsat a valuable data source for consistent and durable monitoring of forest carbon dynamics.