Agnethe Christiansen

Forsker (pensjonistavtale)

(+47) 918 41 094
agnethe.christiansen@nibio.no

Sted
Ås - Bygg H7

Besøksadresse
Høgskoleveien 7, 1433 Ås

Til dokument

Sammendrag

Currently used pesticides (CUPs) were introduced to have lower persistence and bioaccumulation, and lesser bioavailability towards non-target species. Nevertheless, CUPs still represent a concern for both human health and the environment. India is an important agricultural country experiencing a conversion from the use of obsolete organochlorine pesticides to a newer generation of phytosanitary products. As for other developing countries, very little is known about the transfer of CUPs to the human diet in India, where systematic monitoring is not in place. In this study, we analyzed ninety four CUPs and detected thirty CUPs in several food products belonging to five types: cereals and pulses, vegetables, fruits, animal-based foods, and water. Samples were taken from markets in Delhi (aggregating food produced all over India) and in the periurban area of Dehradun (northern India) (representing food produced locally and through more traditional practices). Overall, chlorpyrifos and chlorpropham were the most detected CUPs with a detection frequency of 33% and 25%, respectively. Except for vegetables and fruits, the levels of CUPs in all other food types were significantly higher in samples from Delhi (p < 0.05). Exposure dosage of CUPs through different food matrices was calculated, and chlorpropham detected in potatoes had the maximum exposure dosage to humans (2.46 × 10−6 mg/kg/day). Risk analysis based on the hazard quotient technique indicated that chlorpyrifos in rice (2.76 × 10−2) can be a concern.

Sammendrag

To ensure compliance with food safety regulations, monitoring programs and reliable analytical methods to detect relevant chemical pollutants in food and the environment are key instruments. Pesticides are an important part of pest management in agriculture to sustain and increase crop yields and control post-harvest decay, while pesticide residues in food may pose a risk to human health. Thus, the levels of pesticide residues in food must be controlled and should align with Maximum Residue Levels regulations to ensure food safety. Food safety monitoring programs and analytical methods for pesticide residues and metabolites are well developed. Future developments to ensure food safety must include the increased awareness and improved regulatory framework to meet the challenges with natural toxins, emerging contaminants, novel biopesticides, and antimicrobial resistance in food and the environment. The reality of a complex mixture of pollutants, natural toxins, and their metabolites potentially occurring in food and the environment implies the necessity to consider combined effects of chemicals in risk assessment. Here, we present challenges, monitoring efforts, and future perspectives for chemical food safety focused on the importance of current developments in high-resolution mass spectrometry (HRMS) technologies to meet the needs in food safety and environmental monitoring.