Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2007

Sammendrag

Genetic- and environmental variation and correlation patterns were characterized for modulus of elasticity (MOE), modulus of rupture (MOR) and related wood traits: latewood proportion, wood density, spiral grain, microfibril angle and lignin content in five full-sib families of Norway spruce.The families were evaluated on the basis of clearwood specimens from the juvenile -mature wood transition zone of 93 sampled trees at age 30 year from seed. Family-means varied significantly (p 0.05) for all wood traits studied except lignin content. MOE varied between 7.9-14.1 GPa among trees and 9.4-11.0 GPa among families. MOR varied between 47-87 MPa among trees and 61-71 MPa among families.Families remained significantly different in an analysis of specific MOE (MOE/density) and MOR (MOR/density). Hence, solely relying on wood density as a wood quality trait in tree breeding would not fully yield the potential genetic gain for MOE and MOR. Correlations between wood structural traits and specific MOE and MOR are presented and discussed.

Sammendrag

We present results from early tests and field trials of offspring from two Norway spruce (Picea abies (L.) Karst.) seed orchards containing clones that have been transferred from high altitudes to sea level and from northern to southern latitudes. Seedlings from seeds produced in the low-altitude seed orchard developed frost hardiness later at the end of the growth season, flushed later in field trials, and grew taller than seedlings from seeds produced in natural stands. They had the lowest mortality rate and the lowest frequency of injuries in the field trials. Similar results were observed in seedlings from seeds produced in the southern seed orchard. We found no adverse effects of the changed growth rhythm. Seedlings from two seed crops in the southern orchard, produced in years with a warm and a cold summer, had different annual growth rhythms. The results are explained mainly by the effects of the climatic conditions during the reproductive phase. Seed crops from different years in the same seed orchard may produce seedlings that perform as if they were from different provenances. It is argued that the effects of the climatic conditions during seed production must contribute to the variation among provenances of Norway spruce.

Sammendrag

Forest stands are the basic planning units of managed forest landscapes, and the structural composition of these units is important for conservation of biodiversity. We present a methodological approach for identification and mapping of important structural and environmental features of forest stands. Based on an analysis of habitats of red-listed species and a synthesis of results from research on spatial distribution of forest species, we developed a habitat inventory approach (Complementary Hotspot Inventory, CHI) that is currently used in forestry planning in Norway. The CHI maps fine-scale hotspots for 12 habitat types that are further classified according to positions along main environmental gradients (productivity and humidity). Consisting of different substrates in different environments, these habitats to a large degree support different species assemblages. By incorporating both the hotspot and the complementary approach, the CHI produces data tuned for later conservation measures. The high spatial resolution of data facilitates the use of conservation measures at different spatial scales, from single-tree retention to forest reserves. Avalidation test of habitats identified by CHI showed that the density of red-listed species was four times that of randomly selected old forests.

Sammendrag

Fine roots (2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors.The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m-2, and that of spruce and pine 297 g m-2 and 277 g m-2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone.The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.

Sammendrag

City planners need practical methods to assess and compare the sustainability of different alternatives for urban infrastructure. This article presents the consequences of selecting different methods to normalize the values of sustainability indicators, and the influence of selecting different indicators and different weighting techniques. A nature based sewerage system is compared to a conventional system. The article demonstrates that the method used to normalize the indicators, the choice of relevant indicators and the weighting technique have considerable influence on which system is found to be the most sustainable. By selecting particular indicators, weighting and normalization methods, it is possible to prove that virtually any infrastructure system is more sustainable than any other alternative system. Such a biased approach is difficult to reveal unless the most careful, expert scrutiny is applied. Because of this fact, it is of paramount importance that the consequences of different evaluation methods are discussed and sensitivity analyses are carried out honestly and objectively on the critical parameters. An evaluation process made in this way will enable those parts of the analysis that generate disagreement to be identified, and decisions taken on what is important and unimportant.

Sammendrag

We have studied to what degree Italian ryegrass (Lolium multiflorum Lam.), white clover (Trifolium repens L.) and meadow fescue (Festuca pratensis L.) are able to preserve nitrogen (N) and phosphorous (P) in shoots and roots from one growing season to the next in a northern temperate climate. Field experiments were performed during four consecutive winters in central southeast Norway (60 degrees 42'N, 10 degrees 51'E), and N and P in plant biomass were measured in the autumn and in the spring. We also measured the contents of total N, total P and organic carbon (C) in seepage water that percolated through the aboveground plant material. Uptake of N and P in Italian ryegrass and white clover was substantially larger than in meadow fescue. The winter losses varied greatly from year to year, depending on the winter climate. On the average for all three of the plant species, the winter losses of N from aboveground biomass were 6, 35, 68 and 10% in the four experimental years, respectively. The corresponding P losses were 11, 36, 60 and 22%. On the average for all plant species and experimental years, 43 (+/- 12)% (S.E., n = 12) of the N, 34 (+/- 9)% of the P and 4 (+/- 1)% of the C that was lost from the aboveground plant biomass during the winter, was recovered in seepage water, basically as a nutrient pulse in melt water in early spring. The very low C recovery rate in seepage water suggested a considerable microbial growth on lost plant C. Assuming that all un-recovered plant C was consumed by microorganisms not included in measurements of the seepage water, modelling showed that microbial immobilisation theoretically might explain the unexpectedly low recovery rates of N and P. The study was not designed to investigate the possible effects of psychrophilic microbes on N and P cycling. Therefore, it is inconclusive and underlines the need for more knowledge on this matter. (c) 2006 Elsevier B.V. All rights reserved.

Sammendrag

Boreal forests are increasing in age partly due to reduced logging and efficient wildfire control. As a result, they also stock more carbon. Whether increased forest C stock causes greater production of dissolved organic carbon (DOC) is uncertain. DOC in bulk precipitation, throughfall and soil water was studied in 10-, 30-, 60- and 120-year-old stands of Norway spruce (Picea abies (L.) Karst.) DOC concentrations in throughfall and O horizon soil water followed the order 10<30<60 = 120 and 10 = 30<120<60, respectively. DOC fluxes followed the order 10 = 30<60 = 120 in throughfall, while no significant difference between stands was found for O horizon soil water. Above-ground tree litter varied according to 10<30<60 = 120, a pattern identical to that for DOC concentrations in throughfall and resembling but not identical to that for DOC concentrations in O horizon soil water. This indicates additional sources for DOC in soil water. Seasonality in DOC concentrations was observed at the base of the O horizon, and seasonality in DOC fluxes in both throughfall and O horizon soil water. Our results suggest differences in the polarity of DOC between the 10-year stand and the others, which we interpret as reflecting the lack of grown trees and possibly the different vegetation on the 10-year stand.

Sammendrag

Field trials in 1996, 1997 and 1998 with six potato cultivars differing in levels of foliar and tuber race-nonspecific resistance to late blight were treated with 100, 50 and 33% of the recommended dose of the fungicide fluazinam at application intervals of 7, 14 and 21 days. Using a mixed inoculum of six or seven indigenous isolates of Phytophthora infestans small potato plots were inoculated via infector plants. A foliar blight model for the relationship between the effects of resistance, fungicide application and disease pressure was developed using multiple regression analysis. Cultivars with a high level of quantitative resistance offered the greatest potential for fungicide reduction. The model showed that the effect of resistance on integrated control increased exponentially with increasing cultivar resistance. Reducing fungicide input by lowering the dose resulted in less foliar disease than extending application intervals. The higher the disease pressure, the greater the risk associated with reducing fungicide input by extension of application intervals. The field resistance of cultivars to tuber blight mainly determined the frequency of tuber infection. Exploiting high foliar resistance to reduce fungicide input carried a high risk when cultivar resistance to tuber blight was low. When field resistance to tuber blight was high, a medium level of resistance in the foliage could be exploited to reduce fungicide dose to c. 50%, provided application was at the right time. At a high level of field resistance to both foliar and tuber blight, application intervals could be extended.