Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

1997

Sammendrag

Introduksjon til et kapittel om dyr, inkludert lister med pattedyr og fugler Introduction to a chapter covering animals, including lists of mammal s and birds

Sammendrag

Det satses på nye bærkulturer i Norge. Blåbærdyrkingen er kommet godt i gang, og bjørnebær ligger i startgropen. Bjørnebær er en kresen plante som krever godt klima og godt stell, og bærene er ømfintlige og setter store krav til håndtering. En satsing på bjørnebær vil derfor kreve mye både av produsenter og omsetningsledd. Men trives bjørnebærplanten vil den gi stor avling med flotte, svarte, glinsende bær, med en bærstørrelse på nesten det dobbelte av bringebær. Markedet er interessert i bjørnebær, vi importerer stadig mer både frosne og friske bær. Det er først og fremst friske bær som er interessant å produsere i Norge. Frosne bær kan kjøpes for ca 10 kr kg på verdensmarkedet, og tollen er bare 60 øre kiloet, det klarer vi ikke å konkurrere med. Friske bær selges til helt andre priser, så selv om markedet er mindre, bør det være plass til mange bjørnebærdyrkere i Norge. Ved Planteforsk Njøs startet vi med forsøk med bjørnebær i 1989, og vi har funnet frem til sorter som kan dyrkes på friland i Norge. Bjørnebærplanten er relativt lite hardfør, og krever lenger vekstsesong enn f. eks. bringebærplanten, så det er kun aktuelt å starte med dyrking i områder med godt klima. Bjørnebær kan også dyrkes i plast- eller veksthus. I Holland er det vanlig å dyrke bjørnebær i hus, de får tidligere avling og dermed bedre priser på bærene. De dyrker også under plasttak, for å få bedre bærkvalitet. Det er kanskje noe å tenke på for oss også, spesielt ved dyrking av seine sorter. Utover høsten får vi som oftest mye nedbør, og bærkvaliteten blir dårlig på friland. I dag må alt plantemateriale kjøpes fra utlandet. Men på grunn av økende etterspørsel etter bjørnebærplanter, har Gartnerhallens Eliteplantestasjon Sauherad startet rensing og oppformeringsarbeid med bjørnebær. Går arbeidet etter planen vil det bli norsk kontrollert plantemateriale å få kjøpt fra 1998 eller 1999. Stadig flere ber om råd og veiledning om dyrking av bjørnebær, så derfor har vi laget en dyrkingsveiledning om bjørnebær ved Planteforsk Njøs. Veiledningen omhandler både dyrking på friland og i plast- og veksthus. I heftet vil en finne råd om dyrkingsmetoder, stell, sortsvalg og håndtering av bærene etter høsting. Veiledningen er et hefte i Planteforsk sin serie Grønn Forskning, og man kan få kjøpt heftet ved å henvende seg til Planteforsk Njøs, 5840 Hermansverk, tlf 57 65 36 11 eller fax 57 65 40 53. Heftet er på 28 sider, og koster kr 150. Vi har også laget en rapport som detaljert omhandler dyrking i veksthus og plasthus slik de gjør det i Holland og Belgia. Hefte er en reiserapport fra en studietur i 1996, og heter Klimaregulert produksjon av bringebær og bjørnebær til friskkonsum. Rapporten er på 19 sider, og koster kr 100. Rapporten kan kjøpes ved Planteforsk Njøs.

Sammendrag

The biproduct (algal fibre) which remains after alginate extraction from seaweed contains substantial amounts of plant nutrients, including nitrogen, potassium, sulphur and some phosphorus as well as bases such as sodium, magnesium and calcium. It also contains perlite, which is used to filter out the fibre material. This gives the biproduct a high potential as a physical soil ameliorant, as demonstrated in earlier studies. This study investigated the effects of applying algal fibre at rates of 20 and 40 tonnes DM/ha in spring, on the yield and quality of potatoes and on the nutrient status of the soil at the end of the growing season. Treatments with the use of zero, half-normal and normal rates of mineral compound fertilizer were included on subplots, in order to estimate the fibre"s comparative fertilizer value. The soil used was a relatively fertile gravelly loam, with extremely low moisture holding capacity. The trial was irrigated regularly in dry periods. The weather conditions were characterised by an extremely wet spring, followed by warmer and drier conditions than normal during the remainder of the growing season. The algal fibre had a large, positive effect on the yield of potatoes. In the absence of mineral fertilizer, this amounted to increases in total tuber yield of 30% and 70% with the use of 20 and 40 tonnes DM/ha, respectively.The responses were smaller when mineral fertilizer was used, declining to 7% and 17% at the highest fertilizer level. This suggests that the effect of algal fibre was mainly due to improved nutrient supply. The yield of potatoes of a size suitable for table use (>45 mm) was especially favoured. Assuming that the effect of algal fibre was attributable mainly to its supply of nitrogen, its fertilizer value per tonne of dry matter may be interpolated as being equivalent to the use of 2-2.5 kg N in compound fertiliser. This suggests that about 20% of the nitrogen contained in the algal fibre had become available during the first growing season. Algal fibre had a positive effect on tuber DM concentration when used alone, but had a negative effect when used in conjunction with a high level of mineral fertilizer. The latter effect may be attributed to a delay in maturation due to over-optimum nutrient supply. Despite its high base content, the algal fibre had no effect on the level of the skin disorder "common scab", which is normally associated with high soil pH on light soils. Mineral fertilization, on the other hand, gave an unexpected reduction in its occurrence. The use of algal fibre considerably increased nitrogen concentrations in both haulm and tubers. Effects on other mineral contents were mostly negligible, with the exception of sodium concentration. The latter increased markedly, but this was not thought to reduce their eating quality. Soil reserves of plant-available phosphorus, potassium and calcium at harvest were not affected by the use of algal fibre, whereas that of magnesium increased slightly and that of sodium rose sharply. This led to increased electrical conductivity in the soil. The values measured were nevertheless well below the limit at which plant growth is likely to be impaired. Soil pH increased significantly, by about 0.015 units per tonne DM/ha used. Residual levels of mineralised nitrogen in the soil were increased by both algal fibre and mineral fertilizer. When no fertiizer had been used, the use of 40 tonnes DM/ha of fibre gave an increase of 35 kg N/ha in the topsoil at harvest. When the normal level of mineral fertilizer was used in addition, the figure rose to 66 kg/ha. Such reserves may be utilized by following crops if these are established soon afterwards, but may otherwise be lost through leaching during the winter.