Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2005

Sammendrag

Adaptive traits in Picea abies (Norway spruce) progenies are influenced by the maternal temperatures during seed production. Here, we have extended these studies by testing the effects of maternal photoperiod and temperature on phenology and frost hardiness on progenies. Using eight phytotron rooms, seeds from three unrelated crosses were made in an environmental 2 x 2 factorial combination of long and short days and high and low temperatures. The progenies were then forced to cease growth rapidly at the end of the first growing season. An interactive memory effect was expressed the second growth season. Progenies from high temperature and short days, and from low temperatures and long days, started growth later in spring, ceased shoot growth later in summer, grew taller and were less frost hardy in the autumn than their full siblings from low temperatures and short days, and from high temperatures and long days. Norway spruce has developed a memory mechanism, regulating adaptive plasticity by photoperiod and temperature, which could counteract harmful effects of a rapidly changing climate.

Sammendrag

The root-rot causing fungus Heterobasidion annosum can attack both spruce and pine trees and is the economically most damaging pathogen in northern European forestry. We have monitored the Heterobasidion annosum S-type (fairly recently named H. parviporum) colonization rate and expression of host chitinases and other host transcripts in Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR. We have also transferred a Class IV chitinase to Arabidopsis as well as its promotor in GFP and YFP reporter constructs. Ramets of two 33 -year-old clones differing in resistance were employed as host material and inoculation and wounding was performed. Multiplex real-time PCR detection of host and pathogen DNA was also performed to follow the colonization of the host tissues by the pathogen and the collapse in host DNA levels in infected regions. Host defense transcript levels, as an indicator of the host defense response, were monitored with singleplex real-time PCR. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak clone (409). Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class Ichitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of pathogen perception and host defense signal transduction. This an earlier experiments using mature spruce clones as substrate indicate that it is the speed of the host response and notmaximum amplitude of the host response that is the most crucial component in an efficient defense in Norway spruce toward pathogenic fungi such as H. annosum.

Sammendrag

To study the mechanisms of inducible disease resistance in conifers, changes in transcript accumulation in roots of Norway spruce (Picea abies (L.) Karst.) seedlings exposed to the root rot pathogen Ceratobasidium bicorne Erikss. and Ryv. (anamorph: Rhizoctonia sp.) were monitored by differential display (DD). Because C. bicorne attacks root tips, a desiccation treatment was added to exclude genes induced by pathogen-related desiccation stress. The DD analysis was defined by the use of 11 sets of primers, covering about 5% of the transcriptome. A comparison of gene expression in control, desiccation- and pathogen-stressed roots revealed 36 pathogen-induced gene transcripts. Based on database searches, these transcripts were assigned to four groups originating from spruce mRNA (25 transcripts), rRNA (five transcripts), fungal mRNA (two transcripts) and currently unknown cDNAs (four transcripts). Real-time PCR was applied to verify and quantify pathogen-induced changes in transcript accumulation. Of the 18 transcripts tested, nine were verified to be Norway spruce gene transcripts up-regulated from 1.3- to 66-fold in the infected roots. Four germin-like protein isoforms, a peroxidase and a glutathione S-transferase, all implicated in oxidative processes, including the oxidative burst, were predicted from sequence similarity searches. Seven class IV chitinase isoforms implicated in fungal cell wall degradation and a nucleotide binding site-leucine rich repeat (NBS-LRR) disease resistance protein homologue related to pathogen recognition were identified. Several transcript species, such as the NBS-LRR homologue and the germin-like protein homologues, have not previously been identified as pathogen-inducible genes in gymnosperms.

Sammendrag

Enare-Pasvikregionen er et naturgeografisk og kulturhistorisk grenseland der øst møter vest. I dette vidstrakte skog- og innsjøområdet har den eurosibirske taigaen sitt vestlige endepunkt, i møte med Barentshavets karrige tundrakyst.