Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Til dokument

Sammendrag

Shelf life of plum is limited by several factors, including development of fungal decay. In either one or two seasons, European plum cultivars were exposed to different applications of calcium or fungicide before harvest or left unsprayed. On the experimental trees, the yield was harvested as commercial practice, giving a sample of fruit with a range in maturity acceptable for sale. The yield was divided into two groups, less and more ripened fruit. Fruit samples from each group were stored for 10-14 days at 4°C followed by a simulated shelf life period of 2-3 days at 20°C. Fruit quality was assessed at harvest and after storage. Number of fruit with fungal decay was counted at the end of storage and after simulated shelf life. At harvest, the more ripened fruit had higher weight, soluble solids content, background and cover colour, and lower firmness in most of the experiments. Fruit from trees sprayed six times with calcium had higher weight in first year, but not in second, was less ripen as measured by colour and firmness on some cultivars, but not on others. Time of fungicide application had no effect on fruit quality at harvest. Differences in fruit quality at harvest were most often similar after storage. Fruit grouped as more mature at harvest developed more fungal decay after simulated shelf life than less mature fruit in five of eight experiments. In one out of six experiments calcium applications reduced development of postharvest fungal decay. Fungicide applications had no effect on postharvest fungal decay in either of four experiments. The present results indicate that the ripening degree of plum fruit is more important for development of fungal decay than preharvest applications of calcium or fungicides

Til dokument

Sammendrag

Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar’s effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar’s contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.

Sammendrag

Skogen har vært, er og vil være en viktig ressurs i Norge. Skogen leverer biomasse til produksjon av en mengde forskjellige varer: bioenergi i mange former, treprodukter til bygningsindustri, papir og papp, og avanserte produkter fra bioraffineringsprosesser. I fremtiden vil trolig trebaserte produkter dekke et enda bredere produktspekter. Tilgangen på biomasse er imidlertid begrenset, selv om bevisst forvaltning kan øke tilgangen utover dagens nivå. Skogen leverer også andre økosystemtjenester, som biodiversitet og friluftsliv, og kan ikke minst spille en rolle i det grønne skiftet. Men optimal forvaltning for klima og næring kan stå i motsetning til optimal forvaltning for andre økosystemtjenester.