Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

Potetkreft er en fryktet sykdom i potetdyrkingen, siden den kan føre til totalt avlingstap hvis den ikke bekjempes. Den har ikke vært påvist i Norge siden 1994, men økende forekomster i Sverige og Danmark de siste årene har gjort sjukdommen mer aktuell. Utbruddene i Sverige og Danmark har også vært forårsaket av raser som kan angripe mange av de vanligste potetsortene i Norge. Formålet med dette OK-programmet er å sjekke tilstedeværelse av potetkreft i Norge, samt teste metodikken rundt visuell påvisning og molekylær testing for potetkreft. Selv om man regner potetkreft som ikke forekommende i Norge er det viktig å gjennomføre denne typen undersøkelser for å få dokumentert statusen. Totalt ble 349 prøver vurdert i 2020, og alle var negative ved visuell bedømmelse. Det ble heller ikke funnet noe mistenkelig som førte til at prøvene burde kontrolleres ved PCR. Av de 349 prøvene ble 53 prøver tilfeldig valgt ut for kontroll ved hjelp av PCR, og også disse var negative. Resultatene fra 2020 viser at status for potetkreft i Norge henhold til ISPM 8 er å anse som «Absent: pest no longer present».

Til dokument

Sammendrag

Bio-communication occurs when living organisms interact with each other, facilitated by the exchange of signals including visual, auditory, tactile and chemical. The most common form of bio-communication between organisms is mediated by chemical signals, commonly referred to as ‘semiochemicals’, and it involves an emitter releasing the chemical signal that is detected by a receiver leading to a phenotypic response in the latter organism. The quality and quantity of the chemical signal released may be influenced by abiotic and biotic factors. Bio-communication has been reported to occur in both above- and below-ground interactions and it can be exploited for the management of pests, such as cyst nematodes, which are pervasive soil-borne pests that cause significant crop production losses worldwide. Cyst nematode hatching and successful infection of hosts are biological processes that are largely influenced by semiochemicals including hatching stimulators, hatching inhibitors, attractants and repellents. These semiochemicals can be used to disrupt interactions between host plants and cyst nematodes. Advances in RNAi techniques such as host-induced gene silencing to interfere with cyst nematode hatching and host location can also be exploited for development of synthetic resistant host cultivars.

Til dokument

Sammendrag

Plant-parasitic nematodes (PPN) cause significant yield reduction in commercial pineapple (Ananas comosus) worldwide. In Kenya, few nematode studies have been conducted, although the main commercial pineapple producer has sole dispensation to use Telone II (1,3-Dichloropropene) indicating the magnitude of the nematode problem. This study was conducted with the aim to investigate the population densities and diversity of nematodes in two commercial plantations with two contrasting management practices. We additionally assessed the influence of crop age and compared this with nearby smallholder pineapple production systems. Soil and root samples were collected from fields of different ages in each commercial plantation and from 29 smallholder fields. A total of 18 genera were associated with pineapple, with a relatively greater diversity found in smallholder than commercial farms. The most prevalent genus was Meloidogyne spp. (M. javanica) followed by Helicotylenchus spp., Tylenchus spp. and Aphelenchoides spp. PPN densities were higher in relatively older fields of 24 and 36 months than from fallow and 3-month-old fields. Regression analysis additionally demonstrated the rise of PPN densities with age of pineapple fields, especially Meloidogyne spp., while free-living nematode densities declined. This study provides an indication of the high level of PPN infection in pineapple in Kenya, which would constitute an important factor contributing to low yields. The study confirms an obvious need for pineapple producers to control PPN to improve crop yields.

Til dokument

Sammendrag

The banana weevil (BW), Cosmopolites sordidus, is the main coleopteran pest of banana, causing up to 100% yield loss. In this study, we screened 20 isolates of entomopathogenic fungi (EPF) for the management of BW. In the lab, eight Beauveria bassiana isolates caused >50% mortality of the adult BW, whereas Metarhizium anisopliae and Isaria fumosorosea isolates were less pathogenic. B. bassiana isolates ICIPE 648, ICIPE 660 and ICIPE 273 were the most pathogenic, killing ≥80% of adult BW. B. bassiana isolate ICIPE 622 yielded the highest spores per BW cadaver (1.84 × 108 spores), followed by ICIPE 660, ICIPE 273 and ICIPE 648—1.17 × 108, 3.8 × 107 and 3.6 × 107 spores, respectively. ICIPE 273 had the shortest LT50 (5.3 days) followed by ICIPE 648 (9.8 days) and 660 (11.1 days). Similarly, the LC50 values for the three isolates were 5.18 × 107, 5.49 × 107 and 5.2 × 107 spores mL−1, respectively. In the field, ICIPE 273 and ICIPE 648 had the highest (31.3%) and lowest (20.8%) pathogenicity, respectively. This study indicates that the B. bassiana isolates ICIPE 273, ICIPE 648 and ICIPE 660 are potential candidates for the environmentally sustainable management of BW.

Til dokument

Sammendrag

A new species of Phasmarhabditis was isolated from the slug, Polytoxon robustum, from Nairobi, Kenya. The nematode was identified using morphological, morphometric, molecular and phylogenetic analyses. Phasmarhabditis kenyaensis n. sp. is characterised by an infective juvenile with the longest body length in the genus, measuring 1232 (1107-1336) μm, by the presence of males with a bursa bearing nine bilateral pairs of genital bursal papillae and one pair of papilliform phasmids flanking the tail, cephalate paired spicules, with an arc length of 71 (57-81) μm, as well as by females with a vulva located at the mid-body region and a conoid tail shape, with two phasmids located at ca 40% of the tail length. The molecular phylogeny of the new species, as inferred from its SSU (small subunit) rRNA gene, places P. kenyaensis n. sp. genetically close to undescribed phasmarhabditids from South Africa, suggesting an African grouping, while the D2-D3 (large ribosomal subunit) and ITS region analyses relate P. kenyaensis n. sp. to P. meridionalis, with weak bootstrap support. This is the third new Phasmarhabditis species described from the African continent, the new species bringing the total known complement of the genus to 14 species. A morphometric compendium to all species cultured in vivo is supplied.