Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

Cell wall disrupted and dried Microchloropsis gaditana (Mg), Tetraselmis chui (Tc) and Chlorella vulgaris (Cv) microalgae biomasses, with or without ethanol pre‐treatment, were added to wheat bread at a wheat flour substitution level of 12%, to enrich bread protein by 30%. Baking performance, protein quality and basic sensory properties were assessed. Compared to wheat, Mg, Tc and Cv contain higher amounts of essential amino acids and their incorporation markedly improved protein quality in the bread (DIAAS 57–66 vs 46%). The incorporation of microalgae reduced dough strength and bread volume and increased crumb firmness. This was most pronounced for Cv and Tc but could be improved by ethanol treatment. Mg gave adequate dough strength, bread volume and crumb structure without ethanol treatment. To obtain bread of acceptable smell, appearance, and colour, ethanol treatment was necessary also for Mg as it markedly reduced the unpleasant smell and intense colour of all algae breads. Ethanol treatment reduced the relative content of lysine, but no other essential amino acids. However, it also had a negative impact on in vitro protein digestibility. Our results show that Mg had the largest potential for protein fortification of bread, but further work is needed to optimize pre‐processing and assess consumer acceptance.

Til dokument

Sammendrag

The use of microalgal starch has been studied in biorefinery frameworks to produce bioethanol or bioplastics, however, these products are currently not economically viable. Using starch-rich biomass as an ingredient in food applications is a novel way to create more value while expanding the product portfolio of the microalgal industry. Optimization of starch production in the food-approved species Chlorella vulgaris was the main objective of this study. High-throughput screening of biomass composition in response to multiple stressors was performed with FTIR spectroscopy. Nitrogen starvation was identified as an important factor for starch accumulation. Moreover, further studies were performed to assess the role of light distribution, investigating the role of photon supply rates in flat panel photobioreactors. Starch-rich biomass with up to 30% starch was achieved in cultures with low inoculation density (0.1 g L−1) and high irradiation (1800 µmol m−2 s−1). A final large-scale experiment was performed in 25 L tubular reactors, achieving a maximum of 44% starch in the biomass after 12 h in nitrogen starved conditions.