Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2013

To document

Abstract

Browsing by cervids plays a key role in structuring forest ecosystems and dynamics. Many boreal forest systems are managed for timber resources, and at the same time the wild cervid populations are also harvested. Thus, the determination of sustainable densities of cervids for the purpose of forest and game management is challenging. In this study we report on a red deer (Cervus elaphus) exclosure experiment in the mature forests of Western Norway. Ten pairs of exclosures and browsed plots were initiated in 2008. The rate of browsing and height growth of marked individuals was recorded annually, and the total densities of all tree species assessed over the following 4 y. We found that height growth of rowan (Sorbus aucuparia) saplings (1 m tall), the most numerous tree species at the site, was prevented when 20% of the shoots were browsed. Outside of the exclosures, net height growth of rowan saplings tended to be positive when trees were below 40 cm in height, but growth was constrained in rowan saplings over this height. The density of rowan also increased in both treatments, showing that recruitment was occurring, but the increase was greater where browsed than in the exclosure. The increase in density of rowan, combined with the curtailment of height growth in the presence of red deer, serves to create a carpet of short stature rowan saplings. This has parallels with the browsing lawn concept, but it seems to occur in interaction with snow depth; individuals protruding above the snow layer are likely to be browsed during the winter, whilst smaller individuals are protected during this season, when browsing is at its peak. Keywords: browsing lawns, Cervidae, Cervus elaphus, herbivory, snow depth, sustainable management. Résumé : Le broutement par les cervidés joue un rôle clé dans la composition, la structure et la dynamique des écosystèmes forestiers. De nombreux systèmes forestiers boréaux sont gérés à la fois pour la production de ressources ligneuses et la chasse sportive des cervidés. Un enjeu majeur réside dans la détermination d’une densité de cervidés permettant une exploitation durable de ces ressources. Dans cette étude, nous rapportons une expérience d’exclusion du cerf élaphe (Cervus elaphus) dans les forêts matures de l’ouest de la Norvège basée sur 10 paires d’exclos et de parcelles accessibles au broutement établies en 2008. Nous avons mesuré annuellement durant 4 ans le taux de broutement et de croissance verticale de semis et de gaulis marqués et estimé les densités totales de toutes les espèces d'arbres. Hors des exclos, la croissance des gaules (1 m de haut) de sorbier des oiseleurs (Sorbus aucuparia), l’espèce ligneuse la plus abondante sur le site, était compromise lorsque 20 % des pousses étaient broutées. Nous avons observé une tendance positive dans la croissance des gaules de moins de 40 cm alors qu’elle était compromise au-delà de ce seuil. La densité de sorbiers a également augmenté à l’intérieur et à l’extérieur des exclos révélant un recrutement positif, toutefois l'augmentation de la densité était plus marquée dans les parcelles soumises au broutement. L'augmentation de la densité de sorbiers, combinée à la réduction de la croissance en hauteur, en présence du cerf élaphe génère une strate dense de sorbiers de petite stature. Cette situation présente des similitudes avec le concept de haie de pâturage (browsing lawn), mais pourrait être liée à l’épaisseur de neige au sol. En effet, les arbustes qui dépassent la couche nivale sont plus susceptibles d’être broutés que les plus petits qui sont protégés en hiver lorsque la consommation d’espèces ligneuses est maximale. Mots-clés : cervidés, Cervus elaphus, épaisseur de neige, exploitation durable, haie de pâturage, herbivorie

To document

Abstract

The relative volume growth effects of thinning after whole-tree harvesting (WTH) compared to a conventional stem-only harvest (CH) in young stands of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) were analyzed, using a series of four pine and four spruce field experiments. The series was established in the years 1972–1977, and thinning was performed only once. Results are shown periodically and cumulatively. All sites were included for 20 (19) years in pine and 25 years in spruce. The total experimental period varied between 19 and 35 years for individual sites. Four models assuming additive or multiplicative effects gave only slightly varying results. The inclusion of standing volume after thinning as a covariate was effective in spruce independent of whether the covariate was treated as multiplicative or additive. A logarithmic model with a multiplicative effect of the covariate was preferred in further presentations. Results for pine stands after 20 years indicated a nonsignificant loss of 5% with confidence limits (p = 0.05) of ±6–7%, while the spruce stands showed a significant growth loss of 11% with confidence limits of ±4–5% after 25 years. The difference between the species in relative growth effects was significant, and amounted to 8% for a cumulative 20-year period. No indications of trends in response were found during a 20-year period in pine and a 25-year period in spruce. An analysis of growth effects in the first years showed that basal area increment in spruce was significantly reduced already in the first growing season after thinning.

To document

Abstract

Forests will play a crucial role in the transformation from an economy based on fossil fuels to one relying on renewable resources. Hence, besides being a source of raw material for the forest industry, in the future, forests are expected to increasingly contribute to the production of energy as well as providing a wide range of environmental and social services. Thus, the objective of the present study is to assess the short-term and long-term potential for increasing sustainable wood supply in the EFINORD countries. Present practices and prospects for intensive forest management have been assessed using information from a questionnaire complemented by compilation and evaluating of national forest inventory (NFI) data and other forest sector relevant information. The study indicates a striking variation in the intensity of utilisation of the wood resources within the EFINORD region. For the region as a whole, there seems to be a substantial unused (biophysical) potential. However, recent NFI data from some countries indicate that annual felling rates can be underestimated. If felling rates are higher than currently recognised then, given the increased demand for wood-based energy, there appears to be a need to discuss strategies for large-scale implementation of more intensive forestry practices to ensure that the availability of wood resources in the future can meet an increasing demand in the EFINORD countries.

Abstract

Nondetection of trees is a serious problem for the use of terrestrial laser scanning (TLS) in forest inventory applications. The use of multiple coregistered scans can reduce nondetection but may not eliminate it, and it carries substantial field and post-processing costs. We examined and extended previously developed theoretical approaches to modeling nondetection. The results suggested that tree size as well as multiple stand structural characteristics may be factors, but the theoretical models do not lend themselves to empirical estimation. We then used distance sampling techniques to identify detection probabilities and develop adjusted estimates for trees per hectare and basal area in nine forest stands in southern Norway. The results compared favorably with field estimates based on fixed-area plots. The estimated detection probabilities indicate that correction for nondetection is needed unless the search for trees is limited to very small distances from the scanner. Distance sampling appears promising when TLS is used in the context of temporary-plot forest inventories.

To document

Abstract

Terrestrial lidar (TLS) is an emerging technology for deriving forest attributes, including conventional inventory and canopy characterizations. However, little is known about the influence of scanner specifications on derived forest parameters. We compared two TLS systems at two sites in British Columbia. Common scanning benchmarks and identical algorithms were used to obtain estimates of tree diameter, position, and canopy characteristics. Visualization of range images and point clouds showed clear differences, even though both scanners were relatively high-resolution instruments. These translated into quantifiable differences in impulse penetration, characterization of stems and crowns far from the scan location, and gap fraction. Differences between scanners in estimates of effective plant area index were greater than differences between sites. Both scanners provided a detailed digital model of forest structure, and gross structural characterizations (including crown dimensions and position) were relatively robust; but comparison of canopy density metrics may require consideration of scanner attributes.

To document

Abstract

1. Whether plant competition grows stronger or weaker across a soil fertility gradient is an area of great debate in plant ecology. We examined the effects of competition and soil fertility and their interaction on growth rates of the four dominant tree species in the sub-boreal spruce forest of British Columbia. 2. We tested separate soil nutrient and moisture indices and found much stronger support for models that included the nutrient index as a measure of soil fertility. 3. Competition, soil fertility and their interaction affected radial growth rates for all species. 4. Each species supported a different alternate hypothesis for how competitive interactions changed with soil fertility and whether competition intensity was stronger or weaker overall as soil fertility increased depended on the context, specifically, species, neighbourhood composition and type of competition (shading vs. crowding). 5. The four species varied slightly in their growth response to soil fertility. 6. Individual species had some large variations in the shapes of their negative relationships between shading, crowding and tree growth, with one species experiencing no net negative effects of crowding at low soil fertility. 7. Goodness-of-fit was not substantially increased by models including competition–soil fertility interactions for any species. Tree size, soil fertility, shading and crowding predicted most of the variation in tree growth rates in the sub-boreal spruce forest. 8. Synthesis. The intensity of competition among trees across a fertility gradient was species- and context-specific and more complicated than that predicted by any one of the dominant existing theories in plant ecology.