Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2018
Forfattere
Arne Verstraeten Elena Gottardini Elena Vanguelova Peter Waldner Nicolas Bruffaerts Anita Nussbaumer Mathias Neumann Nicholas Clarke Karin Hansen Pasi Rautio Liisa UkonmaanahoSammendrag
Det er ikke registrert sammendrag
Forfattere
Frode Sundnes Marianne Karlsson Froukje Maria Platjouw Salar Valinia Nicholas Clarke Øyvind KasteSammendrag
Det er ikke registrert sammendrag
Forfattere
Nicholas ClarkeSammendrag
Det er ikke registrert sammendrag
Forfattere
Inge Stupak Tat Smith Nicholas Clarke Niclas Scott Bentsen Virginia Dale Jinke van Dam Rocio Diaz-Chavez Ulrike Eppler Uwe Fritsche Martyn Futter Jianbang Gan Kaija Hakala Thomas Horschig Martin Junginger Keith Kline Søren Larsen Charles Lalonde Maha Mansoor Thuy P.T. Mai-Moulin Shyam Nair Liviu Nichiforel Marjo Palviainen John Stanturf Kay Schaubach Vita Tilvikiene Brian Titus Daniela Thrän Liisa Ukonmaanaho Maria WellischSammendrag
Det er ikke registrert sammendrag
Forfattere
Brian Titus Kendrick Brown Inge Stupak Helja-Sisko Helmisaari Viktor Bruckman Alexander Evans Elena Vanguelova Nicholas Clarke Iveta Varnagiryte-Kabasinskiene Kestutis ArmolaitisSammendrag
Det er ikke registrert sammendrag
Forfattere
Jussi Vuorenmaa Algirdas Augustaitis Burkhard Beudert Witold Bochenek Nicholas Clarke Heleen A de Wit Thomas Dirnböck Jane Frey Hannele Hakola Sirpa Kleemola Johannes Kobler Pavel Krám Antti-Jussi Lindroos Lars Lundin Stefan Löfgren Aldo Marchetto Tomasz Pecka Hubert Schulte-Bisping Krzysztof Skotak Anatoly Srybny Józef Szpikowski Liisa Ukonmaanaho Milan Váňa Staffan Åkerblom Martin ForsiusSammendrag
The international Long-Term Ecological Research Network (ILTER) encompasses hundreds of long-term research/monitoring sites located in a wide array of ecosystems that can help us understand environmental change across the globe. We evaluated long-term trends (1990–2015) for bulk deposition, throughfall and runoff water chemistry and fluxes, and climatic variables in 25 forested catchments in Europe belonging to the UNECE International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). Many of the IM sites form part of the monitoring infrastructures of this larger ILTER network. Trends were evaluated for monthly concentrations of non-marine (anthropogenic fraction, denoted as x) sulphate (xSO4) and base cations x(Ca + Mg), hydrogen ion (H+), inorganic N (NO3 and NH4) and ANC (Acid Neutralising Capacity) and their respective fluxes into and out of the catchments and for monthly precipitation, runoff and air temperature. A significant decrease of xSO4 deposition resulted in decreases in concentrations and fluxes of xSO4 in runoff, being significant at 90% and 60% of the sites, respectively. Bulk deposition of NO3 and NH4 decreased significantly at 60–80% (concentrations) and 40–60% (fluxes) of the sites. Concentrations and fluxes of NO3 in runoff decreased at 73% and 63% of the sites, respectively, and NO3 concentrations decreased significantly at 50% of the sites. Thus, the LTER/ICP IM network confirms the positive effects of the emission reductions in Europe. Air temperature increased significantly at 61% of the sites, while trends for precipitation and runoff were rarely significant. The site-specific variation of xSO4 concentrations in runoff was most strongly explained by deposition. Climatic variables and deposition explained the variation of inorganic N concentrations in runoff at single sites poorly, and as yet there are no clear signs of a consistent deposition-driven or climate-driven increase in inorganic N exports in the catchments.
Forfattere
Ingeborg Callesen Nicholas Clarke Andis Lazdinš Iveta Varnagiryte-Kabasinskiene Karsten Raulund-RasmussenSammendrag
The long-term carrying capacity for biomass production is highly dependent on available soil resources. A soil test method for potential nutrient release capability was applied to 23 Nordic and Baltic forest soil profiles. The soils had coarse (10), medium (12) and fine (1) soil texture and most were podsolising. Extraction with dilute (0.1 M, 1:50 sample:solution ratio) nitric acid for 2 h was followed by 48 h and 168 h of extraction in soil samples from pedogenetic horizons. Dilute nitric acid solution was replaced after each step and release of mineral nutrient elements in solution was determined. C-horizon nutrient release (µmol g−1 fine earth, 0–218 h) was negatively correlated with mean annual temperature (MAT 0.5–8.5 °C) and for potassium (K) also mean annual precipitation (MAP 523–1440 mm y−1) suggesting a gradient in the mineralogy of the parent material that sediment transports during Pleistocene glaciations have not distorted. In B-horizons of sandy parent materials with felsic mineralogy cumulative nutrient release was positively correlated with pH and with Al and Fe release suggesting accumulation and stabilisation of nutrients in pedogenic products. E-horizons had less nutrient release capability than C-horizons, indicating a more weathered state of E-horizon parent material. Soil formation due to mineral dissolution and leaching of base cations and the gradient in parent material origin and weathering state both affected the observed pattern of nutrient release. On soils with very low mineral P resources (e.g. < 250 kg P ha−1 to 50 cm) by repeated dilute acid extraction, harvest of nutrient rich biomass will not be sustainable. However, it can’t be concluded that sites with high P availability by 0.1 M HNO3 can support an intensive harvest without compensation of P (and Ca) by fertilisation. Due to buffering of removed base cations in B-horizons, nutrient export with biomass may not be traceable as pH decline at decadal time scale. Therefore, the direct measurement of nutrient stocks by the extraction procedure (or other similar assessment of nutrient reserves by strong acid) is suggested as indicative for the mineral weathering capability of forest soils to recover from P and base cation depletion by biomass harvest.
Forfattere
James Johnson Elisabeth Graf Pannatier Stefano Carnicelli Guia Cecchini Nicholas Clarke Nathalie Cools Karin Hansen Henning Meesenburg Tiina M. Nieminen Gunilla Pihl-Karlsson Hugues Titeux Elena Vanguelova Arne Verstraeten Lars Vesterdal Peter Waldner Mathieu JonardSammendrag
Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosys- tems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995–2012. Plots with at least 10 years of observations from the ICP Forests moni- toring network were used. Trends were assessed for the upper mineral soil (10– 20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO 2 4 ) in soil solution; over a 10-year period (2000– 2010), SO 2 4 decreased by 52% at 10–20 cm and 40% at 40–80 cm. Nitrate was unchanged at 10–20 cm but decreased at 40–80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+ + Mg 2+ + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuni- form. At 10–20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pH CaCl 2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pH CaCl 2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitor- ing in evaluating ecosystem response to decreases in deposition.
Forfattere
Jian Liu Peter J. A. Kleinman Helena Aronsson Don Flaten Richard W. McDowell Marianne Bechmann Douglas B. Beegle Timothy P. Robinson Ray B. Bryant Hongbin Liu Andrew N. Sharpley Tamie L. VeithSammendrag
Winter manure application elevates nutrient losses and impairment of water quality as compared to manure applications in other seasons. In conjunction with reviewing global distribution of animal densities, we reviewed worldwide mandatory regulations and voluntary guidelines on efforts to reduce off-site nutrient losses associated with winter manure applications. Most of the developed countries implement regulations or guidelines to restrict winter manure application, which range from a regulative ban to guidelines based upon weather and field management conditions. In contrast, developing countries lack such official directives, despite an increasing animal production industry and concern over water quality. An analysis of five case studies reveals that directives are derived from a common rationale to reduce off-site manure nutrient losses, but they are also affected by local socioeconomic and biophysical considerations. Successful programs combine site-specific management strategies along with expansion of manure storage to offer farmers greater flexibility in winter manure management.
Forfattere
Rachel Cassidy Philip Jordan Marianne Bechmann Brian Kronvang Katarina Kyllmar Mairead ShoreSammendrag
Achieving an operational compromise between spatial coverage and temporal resolution in national scale river water quality monitoring is a major challenge for regulatory authorities, particularly where chemical concentrations are hydrologically dependent. The efficacy of flow-weighted composite sampling (FWCS) approaches for total phosphorus (TP) sampling (n = 26–52 analysed samples per year), previously applied in monitoring programmes in Norway, Sweden and Denmark, and which account for low to high flow discharges, was assessed by repeated simulated sampling on high resolution TP data. These data were collected in three research catchments in Ireland over the period 2010–13 covering a base-flow index range of 0.38 to 0.69. Comparisons of load estimates were also made with discrete (set time interval) daily and sub-daily sampling approaches (n = 365 to >1200 analysed samples per year). For all years and all sites a proxy of the Norwegian sampling approach, which is based on re-forecasting discharge for each 2-week deployment, proved most stable (median TP load estimates of 87–98%). Danish and Swedish approaches, using long-term flow records to set a flow constant, were only slightly less effective (median load estimates of 64–102% and 80–96%, respectively). Though TP load estimates over repeated iterations were more accurate using the discrete approaches, particularly the 24/7 approach (one sample every 7 h in a 24 bottle sampler - median % load estimates of 93–100%), composite load estimates were more stable, due to the integration of multiple small samples (n = 100–588) over a deployment.