Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2022
Forfattere
P.L. Sullivan S.A. Billings D. Hirmas L. Li X. Zhang S. Ziegler K. Murenbeeld H. Ajami A. Guthrie K. Singha D. Giménez A. Duro V. Moreno A. Flores A. Cueva A.N. Koop E.L. Aronson H.R. Barnard S.A. Banwart R.M. Keen Attila Nemes N.P. Nikolaidis J.B. Nippert D. Richter D.A. Robinson K. Sadayappan Souza de Souza M. Unruh H. WenSammendrag
Soils form the skin of the Earth’s surface, regulating water and biogeochemical cycles and generating production of food, timber, and textiles around the world. Changes in soil and its ability to perform a range of processes have important implications for Earth system function, especially in the critical zone (CZ)—the area that extends from the top of the canopy to the bottom of groundwater and that harbors most of Earth’s biosphere. A key aspect of the way soil functions results from its structure, defined as the size, shape, and arrangement of soil particles and pores. The network of pores provides storage space for at least a quarter of Earth’s biodiversity, while the abundance, size and connectivity of the pore space regulates fluxes of heat, water, nutrients and gases that define the physical and chemical environment. Here we review the nature of soil structure, focusing on its co-evolution with the plants and microbes that live within the soil, and the degree to which these processes have been incorporated into flow and transport models. Though it is well known that soil structure can change with wetting and drying events, often oscillating seasonally, the dynamic nature of soil structure that we discuss is a systematic shift that results in changes in its hydro-bio-geochemical function over decades to centuries, timescales over which major changes in carbon and nutrient cycles have been observed in the Anthropocene. We argue that the variable nature of soil structure, and its dynamics, need to be better understood and captured by land surface and ecosystem models, which currently describe soil structure as static. We further argue that modelers and empiricists both are well-poised to quantify and incorporate these dynamics into their studies. From these efforts, four fundamental questions emerge: 1) How do rates of soil aggregate formation and collapse, and their overall arrangements, interact in the Anthropocene to regulate CZ functioning from soil particle to continental scales? 2) How do alterations in rooting-depth distributions in the Anthropocene influence pore structure to control hydrological partitioning, biogeochemical transformations and fluxes, exchanges of energy and carbon with the atmosphere and climate, regolith weathering, and thus regulation of CZ functioning? 3) How does changing microbial functioning in a high CO2, warmer world with shifting precipitation patterns influence soil organic carbon dynamics and void-aggregate profile dynamics? 4) How deeply does human influence in the Anthropocene propagate into the subsurface, how does this depth relate to profile structure, and how does this alter the rate at which the CZ develops? The United Nations has recently recognized that 33% of the Earth's soils are already degraded and over 90% could become degraded by 2050. This recognition highlights the importance of addressing these proposed questions, which will promote a predictive understanding of soil structure.
Forfattere
David A. Robinson Attila Nemes Sabine Reinsch Alan Radbourne Laura Bentley Aidan M. KeithSammendrag
Global land use change has resulted in more pasture and cropland, largely at the expense of woodlands, over the last 300 years. How this change affects soil hydraulic function with regard to feedbacks to the hydrological cycle is unclear for earth system modelling (ESM). Pedotransfer functions (PTFs) used to predict soil hydraulic conductivity (K) take no account of land use. Here, we synthesize >800 measurements from around the globe from sites that measured near-saturated soil hydraulic conductivity, or infiltration, at the soil surface, on the same soil type at each location, but with differing land use, woodland (W), grassland (G) and cropland (C). We found that texture based PTFs predict K reasonably well for cropland giving unbiased results, but increasingly underestimate K in grassland and woodland. In native woodland and grassland differences in K can usually be accounted for by differences in bulk density. However, heavy grazing K responses can be much lower indicating compaction likely reduces connectivity. We show that the K response ratios (RR) between land uses vary with cropland (C/W = 0.45 [W/C = 2.2]) and grassland (G/W = 0.63 [W/G = 1.6]) having about half the K of woodland.
Forfattere
Alice BudaiSammendrag
Det er ikke registrert sammendrag
Forfattere
Nils-Otto Kitterød Jens Kværner Per Aagaard Jurga Arustiene Jānis Bikše Atle Dagestad Pål Gundersen Birgitte Hansen Árni Hjartarson Enn Karro Maris Klavins Andres Marandi Rasa Radiene Inga Retike Pekka M. Rossi Lærke ThorlingSammendrag
Det er ikke registrert sammendrag
Sammendrag
Data compilation of groundwater chemistry and freshwater abstraction documents the importance of groundwater as an economical resource in the Nordic Region. Management of groundwater require chemical monitoring to minimize risks for contamination, and mitigation is needed to identify anthropogenic and geogenic hazards related to groundwater quality (Kitterød et al, 2022). The interaction between groundwater and surface water is crucial for important ecological systems in the Nordic Region, and the impacts of climate change is a big challenge for hydrological and environmental research. The increased net global energy influx has impact on average temperature, seasonality, precipitation, and runoff, but issues related to water quality and groundwater have received less attention. The interaction between surface water and groundwater chemistry is embraced in the term hydrogeochemistry. In this context the geological framework plays a cardinal role in combination with residence time of water in the subsurface. Extensive sampling of hydrogeochemical variables have been undertaken in the Nordic Region and results are made available in public databases. Such data deserve more attention from the research community, and a pertinent challenge is to include geochemical variables in water balance studies and regional hydrological modeling. Reference: Kitterød, N-O, Kværner, J., Aagaard, P, Arustienė, J, de Beer, H, Bikše, J, Dagestad, A, Gundersen, P, Hansen, B, Hjartarson, Á, Karro, E, Klavins, M, Marandi, A, Putys, P, Radienė, R, Retiķe, I, Rossi, P M, and Thorling, L: Hydrogeology and Groundwater Quality in the Nordic Region. Submitted to Hydrology Research, 2022. Keywords: Hydrogeochemsitry; groundwater quality; surface water quality.
Forfattere
Claire CoutrisSammendrag
Det er ikke registrert sammendrag
Sammendrag
Bioretention cells are popular stormwater management systems for controlling peak runoff and improving runoff water quality. A case study on a functional large-scale bioretention cell and a laboratory column experiment was conducted to evaluate the concentrations and retention efficiency of bioretention cells towards tire wear particles (TWP). The presence of TWP was observed in all soil fractions (<50 µm, 50–100 µm, 100–500 µm, and >500 µm) of the functional bioretention cell. TWP concentrations were higher (30.9 ± 4.1 mg/g) close to the inlet to the bioretention cell than 5 m away (19.8 ± 2.4 mg/g), demonstrating the influence of the bioretention cell design. The column experiment showed a high retention efficiency of TWP (99.6 ± 0.5%) in engineered soil consisting of sand, silty-sand, and garden waste compost. This study confirmed that bioretention cells built with engineered soil effectively retained TWP > 25 µm in size, demonstrating their potential as control measures along roads.
Forfattere
Cecilia Askham Valentina Pauna Anne-Marie Boulay Peter Fantke Olivier Jolliet Jerome Lavoie Andy Booth Claire Coutris Francesca Verones Miriam Weber Martina G. Vijver Amy Lorraine Lusher Carla HajjarSammendrag
Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.
Forfattere
Cecilia Askham Valentina H. Pauna Anne-Marie Boulay Peter Fantke Olivier Jolliet Jerome Lavoie Booth Andy M. Claire Coutris Francesca Verones Miriam Weber Martina G. Vijver Amy Lorraine Lusher Carla HajjarSammendrag
Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.
Forfattere
Cecilia Askham Valentina Pauna Anne-Marie Boulay Peter Fantke Olivier Jolliet Jerome Lavoie Andy Booth Claire Coutris Francesca Verones Miriam Weber Martina G. Vijver Amy Lorraine Lusher Carla HajjarSammendrag
Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.