Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2025

Abstract

For establishment and growth of newly planted seedlings it is essential to overcome environmental stress at the planting site. Adding the amino acid arginine at planting is a novel treatment aiming at increased establishment success, so far tested in a limited number of applied studies. We examined the effects of adding arginine-phosphate (arGrow®), mechanical site preparation (MSP), and planting time on survival and growth of Norway spruce and Scots pine seedlings in two field experiments in boreal southeastern Norway. After three growing seasons, survival for spring planted seedlings of both species was significantly better following MSP, while addition of arginine-phosphate did not have any effect. Autumn planted pine seedlings with MSP and arginine had higher survival and also larger diameter than spring planted ones with MSP but without arginine. Spruce and pine seedlings with MSP were taller and had larger diameter than those without MSP. For spring planted seedlings of both species, dry weight of roots and shoots was positively affected by MSP, but not by arginine. To conclude, arginine-phosphate had neutral to modestly positive effects on survival and growth, while MSP had clear positive effects. The effect of planting time varied with species.

Abstract

• Genetic effects of continuous cover forestry (CCF) are not well known. We need more research, especially on the genetics of spruce-dominated CCF sites. Levels of relatedness are of interest, as are estimates of safe limits for the intensity and duration of CCF practices that secure genetic potential for good growth and quality. • With even-aged forestry, genetically improved regeneration material can be used to mitigate climate change-related risks through breeding and deployment recommendations. In CCF, currently based on natural regeneration, we assume that enough seedlings establish, and that sites contain enough genetic variation to enable natural selection and evolutionary processes. • Based on research in other regions, the number of reproducing trees must be kept large to avoid excessive levels of relatedness and inbreeding and to maintain sufficient levels of genetic diversity. • In some well-documented long-term experiments in other regions, intensive high-grading has led to slower growth rates, which could partly be due to genetic degradation of the stand. If contemporary recommendations for selection cutting are followed, negative genetic effects should be unlikely.