Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

The frequency and severity of outbreaks by pestiferous insects is increasing globally, likely as a result of human-mediated introductions of non-native organisms. However, it is not always apparent whether an outbreak is the result of a recent introduction of an evolutionarily naïve population, or of recent disturbance acting on an existing population that arrived previously during natural range expansion. Here we use approximate Bayesian computation to infer the colonization history of a pestiferous insect, the winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), which has caused widespread defoliation in northern Fennoscandia. We generated genotypes using a suite of 24 microsatellite loci and find that populations of winter moth in northern Europe can be assigned to five genetically distinct clusters that correspond with 1) Iceland, 2) the British Isles, 3) Central Europe and southern Fennoscandia, 4) Eastern Europe, and 5) northern Fennoscandia. We find that the northern Fennoscandia winter moth cluster is most closely related to a population presently found in the British Isles, and that these populations likely diverged around 2,900 years ago. This result suggests that current outbreaks are not the result of a recent introduction, but rather that recent climate or habitat disturbance is acting on existing populations that may have arrived to northern Fennoscandia via pre-Roman traders from the British Isles, and/or by natural dispersal across the North Sea likely using the Orkney Islands of northern Scotland as a stepping-stone before dispersing up the Norwegian coast. approximate bayesian computation, Quaternary climatic oscillations, Lepidoptera, population genetics

Til dokument

Sammendrag

The effects of climate change-induced ice melting on the microbial communities in different glacial-fed aquatic systems have been reported, but seasonal dynamics remain poorly investigated. In this study, the structural and functional traits of the aquatic microbial community were assessed along with the hydrological and biogeochemical variation patterns of the Arctic Pasvik River under riverine and brackish conditions at the beginning (May = Ice-melt (−)) and during the ice-melting season (July = Ice-melt (+)). The microbial abundance and morphometric analysis showed a spatial diversification between the riverine and brackish stations. Results highlighted different levels of microbial respiration and activities with different carbon and phosphorous utilization pathways, thus suggesting an active biogeochemical cycling along the river especially at the beginning of the ice-melting period. At Ice-melt (−), Gammaproteobacteria and Alphaproteobacteria were dominant in riverine and brackish stations, respectively. Conversely, at Ice-melt (+), the microbial community composition was more homogeneously distributed along the river (Gammaproteobacteria > Alphaproteobacteria > Bacteroidetes). Our findings provide evidence on how riverine microbial communities adapt and respond to seasonal ice melting in glacial-fed aquatic ecosystems.