Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

The effective size of a population (Ne), which determines its level of neutral variability, is a key evolutionary parameter. Ne can substantially depart from census sizes of present-day breeding populations (NC) as a result of past demographic changes, variation in life-history traits and selection at linked sites. Using genome-wide data we estimated the long-term coalescent Ne for 17 pinniped species represented by 36 population samples (total n = 458 individuals). Ne estimates ranged from 8,936 to 91,178, were highly consistent within (sub)species and showed a strong positive correlation with NC (R2adj = 0.59; P = 0.0002). Ne/NC ratios were low (mean, 0.31; median, 0.13) and co-varied strongly with demographic history and, to a lesser degree, with species’ ecological and life-history variables such as breeding habitat. Residual variation in Ne/NC, after controlling for past demographic fluctuations, contained information about recent population size changes during the Anthropocene. Specifically, species of conservation concern typically had positive residuals indicative of a smaller contemporary NC than would be expected from their long-term Ne. This study highlights the value of comparative population genomic analyses for gauging the evolutionary processes governing genetic variation in natural populations, and provides a framework for identifying populations deserving closer conservation attention.

Til dokument

Sammendrag

Members of the smoothhound shark genus Mustelus display a widespread distribution pattern across ocean basins with a high degree of sub-regional endemism. The patterns and processes that resulted in smoothhound biodiversity and present-day distribution remain largely unknown. We infer the phylogenetic relationships of the genus Mustelus, based on sequence data (3474 bp) from three mitochondrial genes (CR, NADH-2 and 12S-16SrRNA) and a nuclear gene (KBTBD2) from seven species of Mustelus distributed across the eastern Atlantic- and Indo-Pacific oceans. Using the CR and KBTBD2 dataset, we infer the phylogeographic placement of Old World Mustelus, with particular reference to species from southern Africa. Using a near-complete phylogeny of the genus including Old World and New World species of Mustelus and publicly available sequences of the NADH-2 gene, we found supporting evidence indicating a major cladogenic event separating placental and aplacental species. Biogeographical analyses further revealed that the radiation of Mustelus in the southern African region was driven primarily by long-distance dispersal during the upper Miocene to lower Pleistocene. The placement of the placental blackspotted smoothhound Mustelus punctulatus at the base of the placental non-spotted clade suggests the secondary loss of black spots in the genus, and this was also supported by the ancestral state reconstruction. The results furthermore suggest that the Southern Hemisphere species of the genus arose from multiple separate dispersal events from the Northern Hemisphere which is in line with the earliest record of Mustelus in the Northern Hemisphere.