Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

The aim of this research was to analyze sugars and phenolics of pollen obtained from 15 different ‘Oblačinska’ sour cherry clones and to assess the chemical fingerprint of this cultivar. Carbohydrate analysis was done using high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD), while polyphenols were analyzed by ultra-high-performance liquid chromatography–diode array detector–tandem mass spectrometry (UHPLC-DAD MS/MS) system. Glucose was the most abundant sugar, followed by fructose and sucrose. Some samples had high level of stress sugars, especially trehalose. Rutin was predominantly polyphenol in a quantity up to 181.12 mg/kg (clone III/9), with chlorogenic acid (up to 59.93 mg/kg in clone III/9) and p-coumaric acid (up to 53.99 mg/kg in clone VIII/1) coming after. According to the principal component analysis (PCA), fructose, maltose, maltotriose, sorbitol, and trehalose were the most important sugars in separating pollen samples. PCA showed splitting off clones VIII/1, IV/8, III/9, and V/P according to the quantity of phenolics and dissimilar profiles. Large differences in chemical composition of studied ‘Oblačinska sour cherry’ clone pollen were shown, proving that it is not a cultivar, but population. Finally, due to the highest level of phenolics, clones IV/8, XV/3, and VIII/1 could be singled out as a promising one for producing functional food and/or in medicinal treatments.

Til dokument

Sammendrag

Chemical characterizations of leaves and fruits that were obtained from organically and integrally produced strawberries (′Favette′, ′Alba′, and ′Clery′) and blueberries (′Bluecrop′, ′Duke′, and ′Nui′) from western Serbia were undertaken in this study. Phenolic analysis was done while using ultra-high performance liquid chromatography coupled to a linear ion trap-Orbitrap hybrid mass analyzer, while total phenolic content (TPC), total anthocyanin content (TAC), and radical-scavenging activity (RSA) by spectrophotometry. In general, leaves and fruits from blueberry showed higher levels of TPC and TAC as compared to strawberry. These chemical traits were larger in organic grown fruits and larger in leaves than fruits. The most abundant phenolics in leaves and fruits of blueberry was 5-O-caffeoylquinic acid, followed by quercetin 3-O-galactoside, while catechin, quercetin, and kaempferol 3-O-glucosid were dominant in the leaves and fruits of strawberry. cis, trans-Abscisic acid was detected in all fruit samples, but not in leaves. Blueberries (both fruits and leaves) were separated from strawberries, but only organic blueberry fruits were distinguished from integrated fruits, according to principal component analysis. Quercetin, kaempferol, 5-O-caffeoylquinic acid, ferulic acid, caffeic acid, catechin, p-coumaric acid, and p-hydroxybenzoic acid were the most influential phenolic compounds for the separation. Much higher contents of TPC, RSA, TAC, quercetin 3-O-galactoside, and quercetin were found in fruits and TPC, RSA, catechin, p-hydroxybenzoicacid, p-coumaricacid, and ferulic acid in leaves in all three blueberry cultivars and the strawberry cultivar ′Clery′. These phenolic compounds are good sources of antioxidant compounds with potentially high beneficial effects on human health.

Til dokument

Sammendrag

The objective of this study was to determine and compare the sugar profile, distribution in fruits and leaves and sink-source relationship in three strawberry (‘Favette’, ‘Alba’ and ‘Clery’) and three blueberry cultivars (‘Bluecrop’, ‘Duke’ and ‘Nui’) grown in organic (OP) and integrated production systems (IP). Sugar analysis was done using high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). The results showed that monosaccharide glucose and fructose and disaccharide sucrose were the most important sugars in strawberry, while monosaccharide glucose, fructose, and galactose were the most important in blueberry. Source-sink relationship was different in strawberry compared to blueberry, having a much higher quantity of sugars in its fruits in relation to leaves. According to principal component analysis (PCA), galactose, arabinose, and melibiose were the most important sugars in separating the fruits of strawberries from blueberries, while panose, ribose, stachyose, galactose, maltose, rhamnose, and raffinose were the most important sugar component in leaves recognition. Galactitol, melibiose, and gentiobiose were the key sugars that split out strawberry fruits and leaves, while galactose, maltotriose, raffinose, fructose, and glucose divided blueberry fruits and leaves in two groups. PCA was difficult to distinguish between OP and IP, because the stress-specific responses of the studied plants were highly variable due to the different sensitivity levels and defense strategies of each cultivar, which directly affected the sugar distribution. Due to its high content of sugars, especially fructose, the strawberry cultivar ‘Clery’ and the blueberry cultivars ‘Bluecrop’ and ‘Nui’ could be singled out in this study as being the most suitable cultivars for OP.

Til dokument

Sammendrag

Large amounts of fruit seeds are discarded yearly in different producing industries, which is a waste of a potentially valuable resource as well as a serious disposal problem. Plum is the most important type of commercial fruit in Serbia and seeds could be obtained as a byproduct of alcoholic beverage processing. Their exploitation should be greater and more information about cultivars’ kernels and their composition is required. Also, consumers’ tendency for “natural foods” arises a need for characterization of genotypes with high phenolic contents which could be used in processed food products. Discarding large amounts of plum seeds is a waste of potentially precious sources of phytochemicals. In order to characterize the phenolic profile of approximately 30 plum cultivars, phenolic acids and flavonoids, as potential antioxidants, were determined by ultra-high-performance liquid chromatography (UHPLC) coupled with hybrid mass spectrometry, which combines the Linear Trap Quadrupole (LTQ) and OrbiTrap MS/MS mass analyzer together with chemometric analysis. The UHPLC–LTQ OrbiTrap MS technique was proven to be reliable for the unambiguous detection of phenolic acids, their derivatives, and flavonoid aglycones based on their molecular masses and fragmentation pattern. The phenolic acids prevail over the flavonoids, with protocatechuic acid, p-hydroxybenzoic acid, ferulic acid, and chlorogenic acid as the most abundant ones. In addition, catechin was the most abundant flavonoid.