Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Weeds are one of the biggest problems that modern agriculture is facing worldwide due to the impact they have on crop productivity. Thus, there is a necessity to develop crop varieties with herbicide resistance or tolerance, which would provide cost-effective tools for helping farmers control weeds in the field. Development of herbicide-tolerant crops was initially based on conventional plant breeding and transgenic technology. In recent years, the emerging genome technologies, including ZFNs (zinc-finger nucleases), TALENs (transcription activator-like effector nucleases), and CRISPR (clustered regularly interspaced short palindromic repeat), provide us a new way for crop improvement through precise manipulation of endogenous genes in the plant genomes. Among these, CRISPR technologies, including nuclease systems, base editors, and prime editors, are really promising in creating novel crop germplasms with herbicide tolerance as they are simple, easy to use, and highly efficient. In this review, we briefly summarize the latest development and breakthroughs of CRISPR technologies in creating herbicide-tolerant crops. Finally, we discuss the future applications of CRISPR technologies in developing herbicide-tolerant crops.

To document

Abstract

Sorption of nutrients such as NH4+ is often quoted as a critical property of biochar, explaining its value as a soil amendment and a filter material. However, published values for NH4+ sorption to biochar vary by more than 3 orders of magnitude, without consensus as to the source of this variability. This lack of understanding greatly limits our ability to use quantitative sorption measurements towards product design. Here, our objective was to conduct a quantitative analysis of the sources of variability, and infer which biochar traits are more favourable to high sorption capacity. To do so, we conducted a standardized remodelling exercise of published batch sorption studies using Langmuir sorption isotherm. We excluded studies presenting datasets that either could not be reconciled with the standard Langmuir sorption isotherm or generated clear outliers. Our analysis indicates that the magnitude of sorption capacity of unmodified biochar for NH4+ is lower than previously reported, with a median of 4.2 mg NH4+ g−1 and a maximum reported sorption capacity of 22.8 mg NH4+ g−1. Activation resulted in a significant relative improvement in sorption capacity, but absolute improvements remain modest, with a maximum reported sorption of 27.56 mg NH4+ g−1 for an activated biochar. Methodology appeared to substantially impact sorption estimates, especially practices such as pH control of batch sorption solution and ash removal. Our results highlight some significant challenges in the quantification of NH4+ sorption by biochar and our curated data set provides a potentially valuable scale against which future estimates can be assessed.

Abstract

Weeds may reduce crop yields significantly if managed improperly. However, excessive herbicide use increases risk of unwanted effects on ecosystems, humans and herbicide resistance development. Weed harrowing is a traditional method to manage weeds mechanically in organic cereals but could also be used in conventional production. The weed control efficacy of weed harrowing can be adjusted by e.g. the angle of the tines. Due to its broadcast nature (both crop and weed plants are disturbed), weed harrowing may have relatively poor selectivity (i.e. small ratio between weed control and crop injury). To improve selectivity, a sensor-based model which takes into account the intra-field variation in weediness and “soil density” in the upper soil layer (draft force of tines), is proposed. The suggested model is a non-linear regression model with three parameters and was based on five field trials in spring barley in SE Norway. The model predicts the optimal weed harrowing intensity (in terms of the tine angle) from the estimated total weed cover and SD per sub-field management unit, as well as a pre-set biological weed threshold (defined as the acceptable total weed cover left untreated). Weed cover and SD were estimated with RGB images (analysed with custom-made machine vision) and an electronic load cell, respectively. With current parameter values, the model should be valid for precision weed harrowing in spring barley in SE Norway. The next step is to test the model, and if successful, adjust it to more cereal species. Weeds may reduce crop yields significantly if managed improperly. However, excessive herbicide use increases risk of unwanted effects on ecosystems, humans and herbicide resistance development. Weed harrowing is a traditional method to manage weeds mechanically in organic cereals but could also be used in conventional production. The weed control efficacy of weed harrowing can be adjusted by e.g. the angle of the tines. Due to its broadcast nature (both crop and weed plants are disturbed), weed harrowing may have relatively poor selectivity (i.e. small ratio between weed control and crop injury). To improve selectivity, a sensor-based model which takes into account the intra-field variation in weediness and “soil density” in the upper soil layer (draft force of tines), is proposed. The suggested model is a non-linear regression model with three parameters and was based on five field trials in spring barley in SE Norway. The model predicts the optimal weed harrowing intensity (in terms of the tine angle) from the estimated total weed cover and SD per sub-field management unit, as well as a pre-set biological weed threshold (defined as the acceptable total weed cover left untreated). Weed cover and SD were estimated with RGB images (analysed with custom-made machine vision) and an electronic load cell, respectively. With current parameter values, the model should be valid for precision weed harrowing in spring barley in SE Norway. The next step is to test the model, and if successful, adjust it to more cereal species.

Abstract

Management of Scots pine (Pinus sylvestris L.) in Norway requires a forest growth and yield model suitable for describing stand dynamics of even-aged forests under contemporary climatic conditions with and without the effects of silvicultural thinning. A system of equations forming such a stand-level growth and yield model fitted to long-term experimental data is presented here. The growth and yield model consists of component equations for (i) dominant height, (ii) stem density (number of stems per hectare), (iii) total basal area, (iv) and total stem volume fitted simultaneously using seemingly unrelated regression. The component equations for stem density, basal area, and volume include a thinning modifier to forecast stand dynamics in thinned stands. It was shown that thinning significantly increased basal area and volume growth while reducing competition related mortality. No significant effect of thinning was found on dominant height. Model examination by means of various fit statistics indicated no obvious bias and improvement in prediction accuracy in comparison to existing models in general. An application of the developed stand-level model comparing different management scenarios exhibited plausible long-term behavior and we propose this is therefore suitable for national deployment.

Abstract

The Copernicus high-resolution layer imperviousness density (HRL IMD) for 2018 is a 10 m resolution raster showing the degree of soil sealing across Europe. The imperviousness gradation (0–100%) per pixel is determined by semi-automated classification of remote sensing imagery and based on calibrated NDVI. The product was assessed using a within-pixel point sample of ground truth examined on very high-resolution orthophoto for the section of the product covering Norway. The results show a high overall accuracy, due to the large tracts of natural surfaces correctly portrayed as permeable (0% imperviousness). The total sealed area in Norway is underestimated by approximately 33% by HRL IMD. Point sampling within pixels was found to be suitable for verification of remote sensing products where the measurement is a binomial proportion (e.g., soil sealing or canopy coverage) when high-resolution aerial imagery is available as ground truth. The method is, however, vulnerable to inaccuracies due to geometrical inconsistency, sampling errors and mistaken interpretation of the ground truth. Systematic sampling inside each pixel is easy to work with and is known to produce more accurate estimates than a simple random sample when spatial autocorrelation is present, but this improvement goes unnoticed unless the status and location of each sample point inside the pixel is recorded and an appropriate method is applied to estimate the within-pixel sampling accuracy.

To document

Abstract

Background Eimeria spp. are widespread apicomplexan parasites known to cause coccidiosis in livestock, resulting in reduced animal welfare and productivity, particularly in sheep. The treatment options are limited, and there is an emerging development of resistance against registered pharmaceuticals. Spruce bark is rich in plant secondary metabolites (PSM), such as condensed tannins, which are bioactive compounds previously shown to have antiparasitic activity. Here, we examined the anticoccidial properties of bark extract of Norway spruce (Picea abies) against a field isolate of ovine Eimeria spp. by treating Eimeria-infected pre-ruminant lambs with water-extracted bark daily for 12 days. We hypothesised that the bark extract would reduce the faecal oocyst excretion and, consequently, the severity of diarrhoea. Results Oral administration of spruce bark extract significantly reduced the excretion of Eimeria oocysts in milk-fed lambs post treatment till the end of the trial 22 days post infection. This difference in oocyst excretion between the treated and the untreated infected animals increased with time. Compared to the untreated and the sham-infected control group, the group treated with bark extract had softer faeces and reduced milk intake during the treatment period. After discontinuing the treatment, the treated animals got a more solid and formed faeces compared to that of the untreated control group, and the milk intake increased to the level of the sham-infected, untreated control group. The bark extract treated animals had a lower body weight and a lower mean daily body weight gain throughout the whole duration of the experiment. Conclusions Bark extract from Norway spruce showed marked anticoccidial properties by reducing the faecal oocyst count and associated diarrhoea in young lambs. Simultaneously we experienced detrimental effects of the treatment, displayed as reduced feed intake and daily body weight gain. Therefore, we suggest conducting similar studies with lower bark extract dosage to explore the possibilities of a better trade-off to reduce the negative impact while maintaining the antiparasitic effect. Keywords: Coccidia, Coccidiocide, Eimeria, Industrial by-products, Sheep