Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Authors
Jessica Petereit Christina Hoerterer Adrian A. Bischoff-Lang Luís E. C. Conceição Gabriella Pereira Johan Johansen Roberto Pastres Bela H. BuckAbstract
There is an increasing need in the aquaculture industry for more sustainable and functional feed concepts for marine finfish. This study provides results for the effect of alternative feed formulations on health status, welfare parameters, sensory analysis, and growth performance in European seabass (Dicentrarchus labrax) over an 83-day feeding trial. Fish were fed twice a day with five experimental diets. A control diet (control) and four different alternative feed concepts rich in processed animal proteins (PAP), other alternative ingredients (NOPAP), and a positive (NOPAP+) and negative (PAP−) formulation were tested. All alternative formulations contained hydrolysates from aquaculture by-products and macroalgae. The results indicate that the alternative feed concepts are more sustainable alternatives compared with the commercial diet. Equally interesting, the alternative formulations did not affect the sensory analysis of the fillet quality or the animal welfare. These are increasingly important factors in aquaculture products and, accordingly, also in the formulation of new feeds. Feed concepts that are not only more sustainable in their production, have shorter transportation distances, recycle the resources (usage of by-products), and have no adverse effect on growth or welfare parameters are highly needed. Therefore, the experimental diets tested in this study are a win-win concept for future seabass aquaculture production.
Abstract
Population densities of several cervid species have increased in recent decades in North America and Europe, and cervids frequently eat and damage agricultural crops. Competition and depletion of natural food resources are the main mechanisms for the density-dependent decline in vital rates of large herbivores. The extent to which access to agricultural crops can buffer density effects in cervid populations, however, is unknown. Agricultural grasslands cover more than a third of the European agricultural area, and red deer (Cervus elaphus) use these grasslands in many European countries. Over the past few decades, such grasslands have been subject to management intensification (with renewal and fertilization) in some areas and abandonment (no longer being harvested) in other areas. We used generalized linear mixed-effects models to examine the development of body masses of red deer in Norway during a period of population density increase in 16 local management units with different availability of cultivated grasslands (0.87–6.44%) in a region with active management of grasslands (Tingvoll, n = 5,780, 2000–2019) and a region with ongoing abandonment (Hitra, n = 10,598, 2007–2020). There was a consistent decline in the body mass of red deer linked to increased population density in both regions. A higher proportion of agricultural grassland was linked to higher body mass and lower density effects in both sexes and across all age classes. There is a link between body mass, survival, and reproduction. Therefore, the buffering of density effects of access to agricultural crops will fuel cervid population growth and lead to less natural regulation of abundance, making it more difficult to control dense cervid populations by harvesting.
Authors
Jian LiuAbstract
No abstract has been registered
Authors
Mehreteab Tesfai Alamu Oladeji Emmanuel Joyce Bakuwa Njoloma Sekhar Udaya Nagothu Joel NgumayoAbstract
Chapter 8 provides a comprehensive review of literature pertaining to agroecological (AE) farming approaches/practices and knowledge driven from stakeholders’ and scientific studies. The review identifies the major drivers, barriers, gaps, and opportunities of AE practices in the context of African farming systems. The chapter presents the best combinations of AE practices as alternative approaches to the current unsustainable farming practices. Experiences from Zambia and other countries where selected AE practices are being implemented by farmers with the support of diverse stakeholders are shared in the chapter. Further, key ecological, social, and economic indicators developed in the countries are also discussed. The chapter analyses how the AE practices contribute to the reduction of GHG emissions and at the same time address the UN Sustainable Development Goals (SDGs), e.g., SDG 2 (food and nutrition security), SDG 12 (sustainable food production and consumption), SDG 13 (climate action), and SDG 15 (life on land).
Authors
Emily Lines Matthew Allen Carlos Cabo Kim Calders Amandine Debus Stuart Grieve Milto Miltiadou Adam Noach Harry JF Owen Stefano PulitiAbstract
With the rise in high resolution remote sensing technologies there has been an explosion in the amount of data available for forest monitoring, and an accompanying growth in artificial intelligence applications to automatically derive forest properties of interest from these datasets. Many studies use their own data at small spatio-temporal scales, and demonstrate an application of an existing or adapted data science method for a particular task. This approach often involves intensive and time-consuming data collection and processing, but generates results restricted to specific ecosystems and sensor types. There is a lack of widespread acknowledgement of how the types and structures of data used affects performance and accuracy of analysis algorithms. To accelerate progress in the field more efficiently, benchmarking datasets upon which methods can be tested and compared are sorely needed.Here, we discuss how lack of standardisation impacts confidence in estimation of key forest properties, and how considerations of data collection need to be accounted for in assessing method performance. We present pragmatic requirements and considerations for the creation of rigorous, useful benchmarking datasets for forest monitoring applications, and discuss how tools from modern data science can improve use of existing data. We list a set of example large-scale datasets that could contribute to benchmarking, and present a vision for how community-driven, representative benchmarking initiatives could benefit the field.
Abstract
Harvest Weed Seed Control (HWSC) systems are used to collect and/or kill weed seeds retained on the weed plants at crop harvest. The effect of HWSC methods depends on the weeds seed retention at harvest. Therefore, delay in crop harvest reduces the efficiency of HWSC. In 2018, we studied the seed production and shedding pattern of Alopecurus myosuroides in a semi-field experiment in Taastrup, Denmark, to find the seed shedding time range of this species. In 2017 and 2018, we also followed the seed shedding pattern of A. myosuroides in a wheat field. Seeds of A. myosuroides were planted in pots in a greenhouse with a constant temperature of 5°C. In December 2017, the seedlings were transplanted in a box (120 × 80 cm2) located outdoor. In spring 2018, the number of plants was reduced to 14 providing a space of 685 cm2 for each plant. We surrounded each plant with a porous net to collect the seeds. The nets were checked once a week to record the beginning of the seed shedding period. Hereafter, seeds were collected weekly using a portable vacuum cleaner. Plants in the box started seed shedding in the second week of June and seed shedding continued for 12 weeks (end of August). In the wheat field, A. myosuroides plants surrounded by a net started to shed seeds in the third week of June and continued until wheat harvest on 31 July in 2017 and in the second week of July and continued until wheat harvest on 15 August in 2018. We found a significant difference between the weekly number of shed seeds in all three experiments (P
Authors
Lise GrøvaAbstract
No abstract has been registered
Authors
Belachew Gizachew ZelekeAbstract
We present an innovative value chain on upscaling and commercial production of carbonized bio-briquettes from agro-industrial waste (mainly a sugarcane bagasse), that aims at substituting a forest-based charcoal for household consumption and thus reduce deforestation. We demonstrate the three main pillars of the value-chain: (1). Empowering and capacity building of members of the cooperatives (mainly women), through developing technical skills, using and maintaining technologies and tools, ergonomics and safety, businesses and marketing. (2). Innovative locally built biowaste to biofuel conversion technologies. This are technologies for raw material (biowaste) preparation (transport, drying and storage), locally developing carbonization kilns of high efficiency and commercial volume, biochar production, selection of bio-based binders, local fabrication of briquetting machines, production of briquettes, drying and storage of briquettes. This section demonstrates (using videos and pictures) on how a daily briquettes production of 3-tons is achieved, with briquette qualities comparable to that of wood-based charcoal. We also demonstrate production of custom-made cookstoves for briquettes by modifying existing local cookstoves. Further, we demonstrate the amount of avoided deforestation through such innovative local approaches. (3). Business and market development: This aims at bringing green-jobs to villages in sustainable supply, distribution, and sales of clean locally produced bio-briquettes. The program enables capacity building of members of the cooperatives in business and marketing; building partnership with key market segments and cooperation with private sector such as distributors, consumers, lenders and banks. The complete value-chain is a result of a successful development and partnership program (2018-2021) supported by the government of Norway that involved Kenyan national institutions, local community cooperatives and international partners.
Authors
Linn Borgen NilsenAbstract
No abstract has been registered
Abstract
Fecal contamination of water constitutes a serious health risk to humans and environmental ecosystems. This is mainly due to the fact that fecal material carries a variety of enteropathogens, which can enter and circulate in water bodies through fecal pollution. In this respect, the prompt identification of the polluting source(s) is pivotal to guiding appropriate target-specific remediation actions. Notably, microbial source tracking (MST) is widely applied to determine the host origin(s) contributing to fecal water pollution through the identification of zoogenic and/or anthropogenic sources of fecal environmental DNA (eDNA). A wide array of host-associated molecular markers have been developed and exploited for polluting source attribution in various aquatic ecosystems. This review is intended to provide the most up-to-date overview of genetic marker-based MST studies carried out in different water types, such as freshwaters (including surface and groundwaters) and seawaters (from coasts, beaches, lagoons, and estuaries), as well as drinking water systems. Focusing on the latest scientific progress/achievements, this work aims to gain updated knowledge on the applicability and robustness of using MST for water quality surveillance. Moreover, it also provides a future perspective on advancing MST applications for environmental research.