Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Abstract
Liming of acidic soils has been suggested as a strategy to enhance N2O reduction to N2 during heterotrophic denitrification, and mitigate N2O emission from N fertilised soils. However, the mechanisms involved and possible interactions of key soil parameters (NO3− and O2) still need to be clarified. To explore to what extent soil pH controls N2O emissions and the associated N2O/(N2O + N2) product ratio in an acidic sandy soil, we set-up three sequential incubation experiments using an unlimed control (pH 4.1) and a limed soil (pH 6.9) collected from a 50-year liming experiment. Interactions between different NO3− concentrations, N forms (ammonium- and nitrate) and oxygen levels (oxic and anoxic) on the liming effect of N2O emission and reduction were tested in these two sandy soils via direct N2 and N2O measurements. Our results showed 50-year liming caused a significant increase in denitrification and soil respiration rate of the acidic sandy soil. High concentrations of NO3− in soil (>10 mM N in soil solution, equivalent to 44.9 mg N kg−1 soil) almost completely inhibited N2O reduction to N2 (>90%) regardless of the soil pH value. With decreasing NO3− application rate, N2O reduction rate increased in both soils with the effect being more pronounced in the limed soil. Complete N2O reduction to N2 in the low pH sandy soil was also observed when soil NO3− concentration decreased below 0.2 mM NO3−. Furthermore, liming evidently increased both N2O emissions and the N2O/(N2+N2O) product ratio under oxic conditions when supplied with ammonium-based fertiliser, possibly due to the coupled impact of stimulated nitrification and denitrification. Overall, our data suggest that long-term liming has the potential to both increase and decrease N2O emissions, depending on the soil NO3− level, with high soil NO3− levels overriding the assumed direct pH effect on N2O/(N2+N2O) product ratio.
Authors
Jürgen Dengler Thomas J. Matthews Manuel J. Steinbauer Sebastian Wolfrum Steffen Boch Alessandro Chiarucci Timo Conradi Iwona Dembicz Corrado Marcenó Itziar García-Mijangos Arkadiusz Nowak David Storch Werner Ulrich Juan Antonio Campos Laura Cancellieri Marta Carboni Giampiero Ciaschetti Pieter De Frenne Jiří Doležal Christian Dolnik Franz Essl Edy Fantinato Goffredo Filibeck John-Arvid Grytnes Riccardo Guarino Behlül Güler Monika Janišová Ewelina Klichowska Łukasz Kozub Anna Kuzemko Michael Manthey Anne Mimet Alireza Naqinezhad Christian Pedersen Robert K. Peet Vincent Pellissier Remigiusz Pielech Giovanna Potenza Leonardo Rosati Massimo Terzi Orsolya Valkó Denys Vynokurov Hannah White Manuela Winkler Idoia BiurrunAbstract
Aim Species–area relationships (SARs) are fundamental scaling laws in ecology although their shape is still disputed. At larger areas, power laws best represent SARs. Yet, it remains unclear whether SARs follow other shapes at finer spatial grains in continuous vegetation. We asked which function describes SARs best at small grains and explored how sampling methodology or the environment influence SAR shape. Location Palaearctic grasslands and other non‐forested habitats. Taxa Vascular plants, bryophytes and lichens. Methods We used the GrassPlot database, containing standardized vegetation‐plot data from vascular plants, bryophytes and lichens spanning a wide range of grassland types throughout the Palaearctic and including 2,057 nested‐plot series with at least seven grain sizes ranging from 1 cm2 to 1,024 m2. Using nonlinear regression, we assessed the appropriateness of different SAR functions (power, power quadratic, power breakpoint, logarithmic, Michaelis–Menten). Based on AICc, we tested whether the ranking of functions differed among taxonomic groups, methodological settings, biomes or vegetation types. Results The power function was the most suitable function across the studied taxonomic groups. The superiority of this function increased from lichens to bryophytes to vascular plants to all three taxonomic groups together. The sampling method was highly influential as rooted presence sampling decreased the performance of the power function. By contrast, biome and vegetation type had practically no influence on the superiority of the power law. Main conclusions We conclude that SARs of sessile organisms at smaller spatial grains are best approximated by a power function. This coincides with several other comprehensive studies of SARs at different grain sizes and for different taxa, thus supporting the general appropriateness of the power function for modelling species diversity over a wide range of grain sizes. The poor performance of the Michaelis–Menten function demonstrates that richness within plant communities generally does not approach any saturation, thus calling into question the concept of minimal area.
Abstract
Green-sprouting potato seed tubers in light and elevated temperatures are vital for production in short-season climates. Using light-emitting diodes (LEDs) to inhibit sprout elongation during pre-sprouting may represent an energy-efficient alternative to traditional indoor light sources. Sprout growth inhibition and some photomorphogenic responses were therefore examined in potato cultivars exposed to LEDs of different wavelength maxima and irradiance rates. Red LED (660 nm) produced the strongest inhibition of sprout elongation at very low irradiances 10–100 nmol m−2 s−1, while far-red LED (735 nm) produced the strongest inhibition at higher irradiances. This inhibitory pattern was similar in all cultivars, although the degree of inhibition varied. The colour of sprouts and tuber skin remained etiolated under far-red LED, in contrast to LEDs between 380 and 660 nm which developed green colour intensity in an irradiance-dependent manner. Mixtures of red and far-red light, and pulses including red/far-red reversals did not produce stronger inhibition, except in some instances where total fluence was increased. Furthermore, green-sprouting under different LED colours did not seem to affect subsequent emergence and growth after planting. The current results suggest an involvement of multiple phytochromes in de-etiolation and sprout growth inhibition in seed potato tubers, which may be selectively utilised in LED-based green-sprouting in red and far-red wavelengths.
Authors
Pia Heltoft ThomsenAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
S. 26 i https://www.iufro.org/fileadmin/material/publications/proceedings-archive/20209-ctre-proceedings-19.pdf
Abstract
Based on data from long-term experimental fields with Norway spruce (Picea abies (L.) H. Karst.), we developed new stem taper and bark functions for Norway. Data was collected from 477 trees in stands across Norway. Three candidate functions which have shown good performance in previous studies (Kozak 02, Kozak 97 and Bi) were fitted to the data as fixed-effects models. The function with the smallest Akaike Information Criterion (AIC) was then chosen for additional analyses, fitting 1) site index-dependent and 2) age-dependent versions of the model, and 3) fitting a mixed-effects model with tree-specific random parameters. Kozak 97 was found to be the function with the smallest AIC, but all three tested taper functions resulted in fairly similar predictions of stem taper. The site index-dependent function reduced AIC and residual standard error and showed that the effect of site index on stem taper is different in small and large trees. The predictions of the age-independent and age-dependent models were very close to each other. Adding tree-specific random parameters to the model clearly reduced AIC and residual variation. However, the results suggest that the mixed-effects model should be used only when it is possible to calibrate it for each tree, otherwise the fixed-effects Kozak 97 model should be used. A model for double bark thickness was also fitted as fixed-effects Kozak 97 model. The model behaved logically, predicting larger relative but smaller absolute bark thickness for small trees.
Abstract
No abstract has been registered
Authors
Celine Rebours Nina Pereira Kvadsheim Matthias Koesling Jon Halfdanarson Bjørn Tore Nystrand Jan Sunde Jan EmblemsvågAbstract
No abstract has been registered