Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

Abstract

Dette er en oppstartrapport for NIBIOs bidrag i prosjektet “E2SOILAGRI”. Rapporten sammenfatter informasjon om det latviske jordinformasjonssystemet som framkom gjennom intervjuer med part-nere og interessenter i prosjektet. Arbeidet er definert som underaktivitet 4.1 i Terms of Reference for NIBIOs rolle i prosjektet.

To document

Abstract

Background Biochar-based fertilizer products (BCF) have been reported to increase both crop yield and N-use efficiency. Such positive effects are often assumed to result from the slow-release of N adsorbed on BCF structures. However, a careful review of the literature suggests that actual mechanisms remain uncertain, which hampers the development of efficient BCF products. Scope Here, we aim at reviewing BCF mechanisms responsible for enhanced N uptake by plants, and evaluate the potential for further improvement. We review the capacity of biochar structures to adsorb and release N forms, the biochar properties supporting this effect, and the methods that have been proposed to enhance this effect. Conclusions Current biochar products show insufficient sorption capacity for the retention of N forms to support the production of slow-release BCFs of high enough N concentration. Substantial slow-release effects appear to require conventional coating technology. Sorption capacity can be improved through activation and additives, but currently not to the extent needed for concentrated BCFs. Positive effects of commercial BCFs containing small amount of biochar appear to result from pyrolysis-derived biostimulants. Our review highlights three prospects for improving N retention: 1) sorption of NH3 gas on specifically activated biochar, 2) synergies between biochar and clay porosities, which might provide economical sorption enhancement, and 3) physical loading of solid N forms within biochar. Beyond proof of concept, quantitative nutrient studies are needed to ascertain that potential future BCFs deliver expected effects on both slow-release and N use efficiency.

To document

Abstract

The large brown seaweeds (kelps) are potential sources of protein for animal feed. They have lower protein contents than most red and green algae, but due to potential for large-scale production, they may represent a significant future protein source. The impact of pH, temperature and polysaccharide-degrading enzymes on the solubility and extraction yields of protein from wet Saccharina latissima biomass was investigated. The protein solubility increased with increasing pH and reached maximum of 23% at pH 11, determined as total amino acids (TAA). The enzyme treatments increased the release of soluble compounds by 30–35%. The highest protein yield obtained was 19%, using a ratio of water to wet seaweed of 1:1 for extraction. Even if the yields can be increased by increasing the water amounts used for extraction, the majority of the protein would remain in the insoluble residue after separation. The strategy for production of a larger quantity of protein-enriched biomass was therefore to maintain the insoluble fraction as the product. A pilot scale production was carried out, also including the red algae Palmaria palmata. In total 750 kg S. latissima and 195 kg P. palmata were processed. The protein content in the product increased from 10 to 20% of dry weight (dw) for S. latissima and from 12 to 28% for P. palmata, with yields of 79 and 69%, respectively. The ash content was reduced from 44 to 26% and from 12 to 5% of dw, respectively, for the two species. The main protein loss was free amino acids, which constituted approximately 10% of TAA in the feedstocks. Less essential than non-essential amino acids were lost, thus, the essential amino acids were enriched in the product.

To document

Abstract

The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth’s surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1–67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.

To document

Abstract

Young children have unique nutritional requirements, and breastfeeding is the best option to support healthy growth and development. Concerns have been raised around the increasing use of milk-based infant formulas in replacement of breastfeeding, in regards to health, social, economic and environmental factors. However, literature on the environmental impact of infant formula feeding and breastfeeding is scarce. In this study we estimated the environmental impact of four months exclusive feeding with infant formula compared to four months exclusive breastfeeding in a Norwegian setting. We used life-cycle assessment (LCA) methodology, including the impact categories global warming potential, terrestrial acidification, marine and freshwater eutrophication, and land use. We found that the environmental impact of four months exclusive feeding with infant formula was 35–72% higher than that of four months exclusive breastfeeding, depending on the impact category. For infant formula, cow milk was the main contributor to total score for all impact categories. The environmental impact of breastfeeding was dependant on the composition of the lactating mother’s diet. In conclusion, we found that breastfeeding has a lower environmental impact than feeding with infant formula. A limitation of the study is the use of secondary LCA data for raw ingredients and processes.

To document

Abstract

Norwegian-grown peas and faba beans are a healthier alternative to meat and dairy products, which are over-consumed in Norway, hence these legumes represent an interesting alternative as food protein source in Norway. However, the environmental impact of these legumes compared to other protein sources has not been studied, in detail. Hence this study, where the environmental impact of this plant protein was analysed and compared to other main protein sources in the Norwegian diet, covers a research gap. The method used was Life Cycle Assessment (LCA) and a large range of impacts was covered. The climate impact for dried grain legumes were 0.55–0.57 kg CO2-eq/kg, The climate impact for dried grain legumes were 0.55–0.57 kg CO2-eq/kg, which is much lower than ruminant meat (19–38 kg CO2-eq/kg), other meat (3.6–4.2 kg CO2-eq/kg), seafood (0.8–22 kg CO2-eq/kg), dairy products (1.2–22 kg CO2-eq/kg products) and cereals (0.66–0.72 kg CO2-eq/kg product). The same trend was found for all impact categories studied. The same pattern was found when comparing the environmental impacts of grain legumes in intermediate and finished products. An evaluation of the nutrient content showed that there is no trade-off between health and environment but the effect of lower protein digestibility and anti-nutritional compounds in legumes remains to be investigated quantitatively. The study indicates that legumes are a more sustainable source of dietary protein than animal protein sources. It is recommended that more research should be done on social and economic sustainability should be done to get at more complete picture of the sustainability of these grain legumes.

Abstract

Short-term trials on cultivated soil were planted with families of Norway spruce that had shown epigenetic memory effects in early tests up to age two years. Measurements and assessments were made of phenology traits, tree heights and stem defects until age 16 years in these trials. The memory effects of the temperature conditions during embryo development and seed maturation were confirmed for the timing of bud flush and for start and cessation of shoot elongation at age six years. The mean differences in timing of these events caused by temperature treatments were on average less than two days. They were considerably larger for families with strong effects on terminal bud set at the end of the first growing season. The memory effects did not result in a prolonged shoot growth period, nor did they affect height growth. Interaction effects expressed in adaptive traits between factorial treatments of temperature and daylength during seed production were large in the short-term trial and were still present at age nine years. The results presented demonstrate that strong memory effects observed in early tests may also be expressed in phenology traits for at least the next five growing seasons.