Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Abstract
No abstract has been registered
Authors
Marie-Christin Wimmler Nadezhda Nadezhdina Hannah Bowen Susana Alvarado-Barrientos Teresa David Gabriela Fontenla-Razzetto Britt Kniesel Holger Lange Roman Mathias Link Yang Liu Jorge López-Portillo Clara Pinto Junbin Zhao Alejandra G. VovidesAbstract
Sap flow measurements are fundamental to understanding water use in trees and could aid in predicting climate change effects on forest function. Deriving knowledge from such measurements requires empirical calibrations and upscaling methods to translate thermometric recordings to tree water use. Here, we developed a user-friendly open-source application, the Sap Flow Analyzer (SFA), which estimates sap flow rates and tree water use from the heat field deformation (HFD) instruments. The SFA incorporates four key features to ensure maximum accuracy and reproducibility of sap flow estimates: diagnosis diagrams to assess data patterns visually, regression models implemented to increase accuracy when estimating K (the main HFD parameter), three approaches to upscale sap flow rates to whole-tree water use and visualization of the input parameters' uncertainty. Thirteen participants were given three raw datasets and assigned data processing tasks using the SFA user guide, from estimating sapwood depth to scaling sap flow rates to whole-tree water use to assess the reproducibility and applicability of the SFA. Participants' results were reasonably consistent and independent of their background in using the SFA, R, or HFD method. The results showed lower variability for high flow rates (SD: mean 1% vs. 10%). K estimates and sapwood depth differentiation were the primary sources of variability, which in turn was mainly caused by the user's chosen scaling method. The SFA provides an easy way to visualize and process sap flow and tree water use data from HFD measurements. It is the first free and open software tool for HFD users. The ability to trace analysis steps ensures reproducibility, increasing transparency and consistency in data processing. Developing tools such as the SFA and masked trials are essential for more precise workflows and improved quality and comparability of HFD sap flow datasets.
Authors
Erico Kutchartt José Ramón González-Olabarria Antoni Trasobares Núria Aquilué Juan Guerra-Hernández Leónia Nunes Ana Catarina Sequeira Brigite Botequim Marius Hauglin Palaiologos Palaiologou Adrian Cardil Martino Rogai Vassil Vassilev Francois Pimont Olivier Martin-Ducup Francesco PirottiAbstract
Canopy base height (CBH) and canopy bulk density (CBD) are forest canopy fuel parameters that are key for modeling the behavior of crown wildfires. In this work, we map them at a pan-European scale for the year 2020, producing a new dataset consisting of two raster layers containing both variables at an approximate resolution of 100 m. Spatial data from Earth observation missions and derived down-stream products were retrieved and processed using artificial intelligence to first estimate a map of aboveground biomass (AGB). Allometric models were then used to estimate the spatial distribution of CBH using the canopy height values as explanatory variables and CBD using AGB values. Ad-hoc allometric models were defined for this study. Data provided by FIRE-RES project partners and acquired through field inventories was used for validating the final products using an independent dataset of 804 ground-truth sample plots. The CBH and CBD raster maps have, respectively, the following accuracy regarding specific metrics reported from the modeling procedures: (i) coefficient of correlation (R) of 0.445 and 0.330 (p-value < 0.001); (ii) root mean square of error (RMSE) of 3.9 m and 0.099 kg m−3; and (iii) a mean absolute percentage error (MAPE) of 61% and 76%. Regarding CBD, the accuracy metrics improved in closed canopies (canopy cover > 80%) to R = 0.457, RMSE = 0.085, and MAPE = 59%. In short, we believe that the degree of accuracy is reasonable in the resulting maps, producing CBH and CBD datasets at the pan-European scale to support fire mitigation and crown fire simulations.
Authors
Emil Sandström Tove Ortman Christine A Watson Jan Bengtsson Clara Gustafsson Göran BergkvistAbstract
One of the major challenges facing agricultural and food systems today is the loss of agrobiodiversity. Considering the current impasse of preventing the worldwide loss of crop diversity, this paper highlights the possibility for a radical reorientation of current legal seed frameworks that could provide more space for alternative seed systems to evolve which centre on norms that support on-farm agrobiodiversity. Understanding the underlying norms that shape seed commons are important, since norms both delimit and contribute to what ultimately will constitute the seeds and who will ultimately have access to the seeds and thus to the extent to which agrobiodiversity is upheld and supported. This paper applies a commoning approach to explore the underpinning norms of a Swedish seed commons initiative and discusses the potential for furthering agrobiodiversity in the context of wider legal and authoritative discourses on seed enclosure. The paper shows how the seed commoning system is shaped and protected by a particular set of farming norms, which allows for sharing seeds among those who adhere to the norms but excludes those who will not. The paper further illustrates how farmers have been able to navigate fragile legal and economic pathways to collectively organize around landrace seeds, which function as an epistemic farming community, that maintain landraces from the past and shape new landraces for the present, adapted to diverse agro-ecological environments for low-input agriculture. The paper reveals how the ascribed norms to the seed commons in combination with the current seed laws set a certain limit to the extent to which agrobiodiversity is upheld and supported and discusses why prescriptions of “getting institutions right” for seed governance are difficult at best, when considering the shifting socio-nature of seeds. To further increase agrobiodiversity, the paper suggests future seed laws are redirected to the sustenance of a proliferation of protected seed commoning systems that can supply locally adapted plant material for diverse groups of farmers and farming systems.
Authors
Fernanda Leiva Florent Abdelghafour Muath K Alsheikh Nina Elisabeth Nagy Jahn Davik Aakash ChawadeAbstract
Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces “ScabyNet”, an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.
Abstract
Scots pine (Pinus sylvestris L.) is a commercially important forest tree species in many Eurasian countries. Its wood has been commonly utilized for production of construction timber. In Sweden, a breeding program was launched in 1950s to improve Scots pine trees to better suit industrial requirements. The emphasis was mainly put on improving stem volume, vitality, stem straightness and branching characteristics whilst wood quality was neglected. However, since some of the important wood quality traits are negatively correlated with the prioritized volume production, the continuation of such an approach could in a long run lead to irreversible deterioration of wood quality. In our study, we focused on wood quality traits that are relevant for construction timber – wood density, stiffness, strength, grain angle and sawn-board shape stability (crook, bow and twist). We linked wood quality traits nondestructively assessed on standing trees with those measured on sawn boards. We estimated narrow-sense heritabilities, genetic correlations and correlated responses to selection with the aim of identifying reliable techniques for wood quality assessment on standing trees and proposing suitable strategies for incorporating wood quality traits into the breeding program. We have concluded that standing-tree drilling resistance, acoustic velocity and grain angle are good predictors of wood density, wood stiffness & strength, and sawn-board twisting, respectively. Taking into account the long-term development on wood market, we are proposing an inclusion of wood density in the breeding program, in the way that it will be retained at the current levels rather than increased, which would also positively affect wood stiffness and strength. Furthermore, we are suggesting to consider grain angle as a breeding trait although more research is needed to unravel its underlying biological mechanism.
Authors
Darius KviklysAbstract
No abstract has been registered
Authors
Dylan Grobler Juliana D. Klein Matthew L. Dicken Kolobe L, Mmonwa Michelle Soekoe Michaela van Staden Snorre Hagen Simo Njabulo Maduna Aletta E. Bester-van der MerweAbstract
Globally, hammerhead sharks have experienced severe declines owing to continued overexploitation and anthropogenic change. The smooth hammerhead shark Sphyrna zygaena remains understudied compared to other members of the family Sphyrnidae. Despite its vulnerable status, a comprehensive understanding of its genetic landscape remains lacking in many regions worldwide. The present study aimed to conduct a fine-scale genomic assessment of Sphyrna zygaena within the highly dynamic marine environment of South Africa's coastline, using thousands of single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (3RAD). A combination of differentiation-based outlier detection methods and genotype-environment association (GEA) analysis was employed in Sphyrna zygaena. Subsequent assessments of putatively adaptive loci revealed a distinctive south to east genetic cline. Among these, notable correlations between adaptive variation and sea-surface dissolved oxygen and salinity were evident. Conversely, analysis of 111,243 neutral SNP markers revealed a lack of regional population differentiation, a finding that remained consistent across various analytical approaches. These results provide evidence for the presence of differential selection pressures within a limited spatial range, despite high gene flow implied by the selectively neutral dataset. This study offers notable insights regarding the potential impacts of genomic variation in response to fluctuating environmental conditions in the circumglobally distributed Sphyrna zygaena.
Abstract
No abstract has been registered
Abstract
Aim Seedling recruitment is a vital process for forest regeneration and is influenced by various factors such as stand composition, climate, and soil disturbance. We conducted a long-term field experiment (18 years) to study the effects of these factors and their interactions on seedling recruitment. Location Our study focused on five main species in boreal mixed woods of eastern Canada: trembling aspen (Populus tremuloides), paper birch (Betula papyrifera), white spruce (Picea glauca), balsam fir (Abies balsamea), and white cedar (Thuja occidentalis). Methods Sixteen 1-m2 seedling monitoring subplots were set up in each of seven stands originating from different wildfires (fire years ranging from 1760 to 1944), with a soil scarification treatment applied to every other subplot. Annual new seedling counts were related to growing-season climate (mean temperature, growing degree days and drought code), scarification, and stand effects via a Bayesian generalized linear mixed model. Results Soil scarification had a large positive effect on seedling recruitment for three species (aspen, birch and spruce). As expected, high mean temperatures during the seed production period (two years prior to seedling emergence) increased seedling recruitment for all species but aspen. Contrary to other studies, we did not find a positive effect of dry conditions during the seed production period. Furthermore, high values of growing degree days suppressed conifer seedling recruitment. Except for white cedar, basal area was weakly correlated with seedling abundance, suggesting a small number of reproductive individuals is sufficient to saturate seedling recruitment. Conclusion Our findings underscore the importance of considering multiple factors, such as soil disturbance, climate, and stand composition, as well as their effects on different life stages when developing effective forest management strategies to promote regeneration in boreal mixed-wood ecosystems.