Sigridur Dalmannsdottir

Research Scientist

(+47) 465 46 249
sigridur.dalmannsdottir@nibio.no

Place
Tromsø

Visiting address
Holtvegen 66, 9016 Tromsø

To document

Abstract

The perennial forage grass timothy (Phleum pratense L.) is the most important forage crop in Norway. Future changes in the climate will affect growing conditions and hence the yield output. We used data from the Norwegian Value for Cultivation and Use testing to find a statistical prediction model for total dry matter yield (DMY) based on agro-climatic variables. The statistical model selection found that the predictors with the highest predictive power were growing degree days (GDD) in July and the number of days with rain (>1mm) in June–July. These predictors together explained 43% of the variability in total DMY. Further, the prediction model was combined with a range of climate ensembles (RCP4.5) to project DMY of timothy for the decades 2050–2059 and 2090–2099 at 8 locations in Norway. Our projections forecast that DMY of today’s timothy varieties may decrease substantially in South-Eastern Norway, but increase in Northern Norway, by the middle of the century, due to increased temperatures and changing precipitation patterns.

Abstract

Climate change results in longer growing season, benefitting forage crop production in northern Norway. Wild goose populations take advantage of the increased access to this high-quality feed. European goose populations are increasing, triggering conflicts and economical losses for farmers. A warmer climate may open for higher yielding seed mixtures, with better tolerance against goose grazing. We tested eight different seed mixtures by adding five forage species in various combinations to a traditional, commercial seed mixture in a randomized block design, three replicates. Goose grazing was simulated by weekly cutting small plots (0.25 m2) fixed within 10.5 m2 larger plots. Cumulated biomass in the weekly cut small plots was compared to total yields from the large plots, harvested twice according to normal practice. No significant differences in biomass accumulation between seed mixtures of the weekly cut plots were identified, possibly due to large variation between replicates, harvest years and cutting regime. However, results indicate that several of the new mixtures containing Dactylis glomerata are higher yielding and tolerate intensified cutting better than the traditional mixtures. This suggests that traditional, commercial seed mixtures are not the best for grasslands subjected to intensive geese grazing. goose grazing, Northern Norway, Dactylis glomerata, field study, simulated grazing

To document

Abstract

The natural light conditions above the Arctic Circle are unique in terms of annual variation creating special growth conditions for crop production. These include low solar elevations, very long daily photosynthetic light periods, midnight sun/absence of dark nights, and altered spectral distribution depending on solar elevation. All these factors are known to affect the growth and the metabolism of plants, although their influence on northern crop plants has not yet been reviewed. The ongoing global warming is especially affecting the temperature × light interactions in the Arctic, and understanding the impact on crop production and plant metabolism will be important for an Arctic contribution to global food production. Arctic light conditions have a strong influence on the timing of plant development, which together with temperature limits the number of cultivars suitable for Arctic agriculture. This review compiles information from the reports about the effects of light conditions at high latitudes on growth, biomass production, flowering and quality of the crop plants and discusses the gained knowledge and the key gaps to be addressed.

To document

Abstract

In 2016, the Sustainable Development Working Group (SDWG) endorsed The Arctic as a Food Producing Region research project. Involving research teams from Iceland, Norway, Canada, Greenland, and Russia, the objective of the project was to assess the potential for increased production and added value of foods originating from the Arctic, with the overarching aim of improving food security, while enhancing the social and economic conditions of Arctic communities. Although the Arctic was recognised as an important food-producing region, there was a shared sense that the Arctic was not meeting its full potential, either in terms of satisfying local food needs or for maximising its domestic or international export potential. Yet beyond speculation, much of which was informed by individual or anecdotal experience, there was little understanding of the current production capacities of Arctic food sectors or where opportunities may lie for sustainable growth. The aim of the project was, therefore, threefold: (1) complete an inventory of the current levels of Arctic food production in terms of products, volumes, revenues; (2) identify the constraints and opportunities for increased production value-added opportunities; and (3) identify potential pathways and new value chains for expanding Arctic food production and distribution opportunities. .............

Abstract

Farmers in Northern Norway frequently experience winter damaged fields caused by ice encasement. The economic consequences are severe due to loss of fodder and costs with reestablishment of swards. It is therefore important to choose the best available varieties for the local climatic and environmental conditions. We tested eight Norwegian cultivars of timothy (Phleum pratense), for tolerance to ice encasement and their regrowth capacity. Both old and new cultivars, and cultivars with good overwintering capacity and less biomass production were tested against more productive cultivars with less overwintering capacity. The experiment was a semi-field setup and plants were established in pots which were placed outside. Half of the pots were covered with ice and half were kept under snow cover. During four months, pots were brought, once per month, into a greenhouse for thawing and measurement of biomass production under normal growth conditions. The results indicate that the old winter hardy cultivar ‘Engmo’ is least affected by ice encasement but produces little biomass. The joint Nordic cultivar ‘Snorri’ produced most biomass of all the cultivars after a treatment with ice cover. In conclusion, there is a large difference between cultivars in ice encasement tolerance, and ice cover affected regrowth capacity far more than snow cover

To document

Abstract

Transnational cooperation is a common strategy for addressing research and development (R&D) issues resulting from similar challenges that cut across administrative borders. Value chains for food and drinks are complex, and transdisciplinary work is recognised as a method for solving complex issues. The Northern Cereals project ran from 2015 to 2018, and its goal was to increase cereal production and the value of grain products in four regions in the Northern Periphery programme area. The project included both R&D, but the main emphasis was on development, and was carried out by transdisciplinary cooperation between R&D partners and small and medium-sized enterprises (SMEs). By reviewing the project’s methods, outcomes and composition, we discuss if a framework of transnational and transdisciplinary cooperation can help to develop the value chain from local barley to beer. We found that transnational cooperation was achieved successfully, that stakeholder involvement was crucial, but that academic disciplines such as marketing and innovation could have been included. In addition, we recognised that much work remains to further increase cereal production and the use of local grain in the Northern Periphery region, but believe that this project has laid a good foundation for further progress.

Abstract

Increasing species diversity often promotes ecosystem functions in grasslands, but sward diversity may be reduced over time through competitive interactions among species. We investigated the development of species’ relative abundances in intensively managed agricultural grassland mixtures over three years to identify the drivers of diversity change. A continental-scale field experiment was conducted at 31 sites using 11 different four-species mixtures each sown at two seed abundances. The four species consisted of two grasses and two legumes, of which one was fast establishing and the other temporally persistent. We modelled the dynamics of the four-species mixtures over the three-year period. The relative abundances shifted substantially over time; in particular, the relative abundance of legumes declined over time but stayed above 15% in year three at many sites. We found that species’ dynamics were primarily driven by differences in the relative growth rates of competing species and secondarily by density dependence and climate. Alongside this, positive diversity effects in yield were found in all years at many sites.

Abstract

Weed suppression was investigated in a field experiment across 31 international sites. The study included 15 plant communities at each site, based on two grasses and two legumes, each sown in monoculture and 11 four-species mixtures varying in the relative proportions of the four species. At each site, one grass and one legume species was selected as fast establishing and the other two species were selected for persistence. Average weed biomass in mixtures over the whole experiment was 52% less (95% confidence interval, 30 to 75%) than in the most suppressive monoculture (transgressive suppression). Transgressive suppression of weed biomass persisted over each year for each mixture. Weed biomass was consistently low and relatively similar across all mixtures and years. Average sown species biomass was greater in all mixtures than in any monoculture. The suppressive effect of sown forage species on weeds in mixtures was achieved without any herbicide use. At each site, weed biomass for almost every mixture was lower than the average across the four monocultures. The average proportion of weed biomass in mixtures was less than in the most suppressive monoculture in two thirds of sites. Mixtures outyielded monocultures, and mixture yield comprised far lower weed biomass.

To document

Abstract

The aim of the "Arctic as a food producing region" - project is to assess the potential for increased production and added value of food from the Arctic region, with the overarching aim of improving economic and social conditions of Arctic communities. This report is the output from the first phase of the project, providing a description of the main food production and examples of conditions for food production in the Arctic areas of the countries involved. This will form the basis for further analysis of opportunities, driving forces and barriers for further development of arctic food production, in the next phase of the project. The project has participation from Canada, Denmark, Greenland, Iceland, Norway and Russia, and is endorsed by the Arctic Council Sustainable Development Working Group (SDWG).

To document

Abstract

The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern- and southern-adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths. Photoacclimation, leaf elongation and freezing tolerance were studied. The results showed that plants cold acclimated during the period with lowest irradiance and shortest day had lowest freezing tolerance, lowest photosynthetic activity, longest leaves and least biomass production. Higher acclimation temperature (12°C) resulted in lower freezing tolerance, lower photosynthetic activity, faster leaf elongation rate and higher biomass compared with the other temperatures. Photochemical mechanisms were predominant in photoacclimation. The northern-adapted populations had a better freezing tolerance than the southern-adapted except when grown during the late autumn period and at the highest temperature; then there were no differences between the populations. Our results indicate that the projected climate change in the north may reduce freezing tolerance in grasses as acclimation will take place at higher temperatures and shorter daylengths with lower irradiance.

To document

Abstract

1. Increased species diversity promotes ecosystem function; however, the dynamics of multi-speciesgrassland systems over time and their role in sustaining higher yields generated by increased diver-sity are still poorly understood. We investigated the development of species’ relative abundances ingrassland mixtures over 3 years to identify drivers of diversity change and their links to yield diver-sity effects.2. A continental-scale field experiment was conducted at 31 sites using 11 different four-speci esmixtures each sown at two seed abundances. The four species consisted of two grasses and two legumes, of which one was fast establishing and the other temporally persistent. We modelledthe dynamics of the four-species mixtures, and tested associations with diversity effects on yield.3. We found that species’ dynamics were primarily driven by differences in the relative growth rates(RGRs) of competing species, and secondarily by density dependence and climate. The temporallypersistent grass species typically had the highest RGRs and hence became dominant over time. Den-sity dependence sometimes induced stabilising processes on the dominant species and inhibitedshifts to monoculture. Legumes persisted at most sites at low or medium abundances and persistencewas improved at sites with higher annual minimum temperature.4. Significant diver sity effects were present at the majority of sites in all years and the strength ofdiversity effects was improved with higher legume abundance in the previous year. Observed diver-sity effects, when legumes had declined, may be due to (i) important effects of legumes even at lowabundance, (ii) interaction between the two grass species or (iii) a store of N because of previouspresence of legumes.5. Synthesis. Alongside major compositional changes driven by RGR differences , diversity effectswere observed at most sites, albeit at reduced strength as legumes declined. This evidence stronglysupports the sowing of multi-species mixtures that include legumes over the long-standing practiceof sowing grass monocultures. Careful and strategic selection of the identity of the species used inmixtures is suggested to facilitate the maintenance of species diversity and especially persistence oflegumes over tim e, and to preser ve the strength of yield increases associated with diversity.

To document

Abstract

Although grass dominates most agricultural systems in the North Atlantic region (NAR), spring barley is the most important cereal and is used for animal feed and food and drink products. Recent changes in climate have resulted in warmer conditions across the NAR which have major implications for crop production. In this paper, we investigate the thermal requirement of spring barley in the region and use the results to examine the effects of recent trends in temperature and rainfall on barley cultivation, based on 11 regional meteorological sites. At these sites, between 1975 and 2015, we found significant warming trends for several months of the cropping season and significant trends for increases in the cropping season degree days (CSDD). In recent years, this has resulted in an increased proportion of years when the estimated minimum thermal requirement for barley has been met at sites above about 60°N. However, annual variations in CSDD are large and years still occur at these sites where this is insufficient. While warming could potentially allow an earlier start and later end to the cropping season, it is likely that high rainfall at maritime sites, and low rainfall at continental sites, will limit the ability of growers to benefit from this. Warming is considered to have been one of the main factors contributing to the large expansion of the area of barley cultivated in Iceland since the 1990s.

To document

Abstract

1. Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment. 2. At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, “method of nitrogen acquisition” and “pattern of temporal development”. 3. Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t DM ha−1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity. 4. Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%–75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture. 5. Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). 6. Synthesis and applications. Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were consistently strong across mixtures varying widely in species' proportions and over time. The level of weed biomass did not vary greatly across mixtures varying widely in proportions of sown species. These diversity benefits in intensively managed grasslands are relevant for the sustainable intensification of agriculture and, importantly, are achievable through practical farm-scale actions.

Abstract

Eight experiments with cultivars (cvs.) of grass and clover species were established in the Faroe Islands, Greenland, Iceland, Norway and Sweden to evaluate important forage species and cvs. in terms of yield potential, persistence and adaptation to variable climate in the West Nordic countries. Timothy had on average the highest spring cover after three years of trial together with smooth meadow grass (cv. Knut), whereas perennial ryegrass had the lowest spring cover after three years. On average cocksfoot (cv. Laban) and timothy (Grindstad related cvs.) gave the highest yield, 8.85 and 8.71 t ha-1, respectively, and smooth meadow grass and common bent grass the lower yields, 7.52 and 7.30 t ha-1, respectively. The results from these experiments show that we have a wide range of species and cultivars usable in the West Nordic areas. We can meet an increase in temperature to a certain level by moving the more southern species and cvs. farther north, however, our most winter hardy cvs. are still important to maintain.

To document

Abstract

The expected temperature rise in late summer/early autumn can change the conditions for acclimation and affect the winter survival of perennial crops. This study examined the effect of the temperature just before the onset of cold acclimation (pre-acclimation) on freezing tolerance of timothy (Phleum pratense L.), perennial ryegrass (Lolium perenne L.) and red clover (Trifolium pratense L.) populations (both cultivars and breeding populations) adapted to either northern or southern parts of Norway. Using phytotron experiments, we studied whether increasing pre-acclimation temperature delays growth cessation, affects photoacclimation and reduces freezing tolerance. Furthermore, we assessed whether these effects were related to the latitudinal adaptation of the plant material. The results showed that a rise in pre-acclimation temperature decreased both cold acclimation capacity and photoacclimation in these species. This affected the freezing tolerance, which was reduced significantly more in northern-adapted population of timothy and perennial ryegrass compared with southern-adapted populations. Red clover was less affected by temperature changes than the grasses.

To document

Abstract

This study evaluates the effects of climate change on agriculture in Northern Norway. It is based on downscaled climate projections for six different municipalities combined with interviews with farmers, advisors and administrative personnel in these municipalities. The projections document large climatic differences both between and within the different municipalities. The main predicted climatic changes include increasing temperatures and precipitation as well as increased frequency of certain types of extreme weather events. Despite challenges such as unstable winters, increased autumn precipitation and possibly more weeds and diseases, a prolongation of the current short growth season together with higher growth temperatures can give new opportunities for agriculture here. The impacts are expected to differ both within and between municipalities and will require tailored adaptive strategies. Most of these however should pose no difficulty implementing, having an agronomical basis that farmers are accustomed to cope with.

Abstract

An interdisciplinary study, based on downscaled climate change scenarios and interviews with local farmers in Northern Norway, has assessed biological and agronomic effects of climate change, and interaction with political, economic and social factors. The study confirms that farmers are facing complex challenges. Negative effects from climate change combine with other challenges.

Abstract

In order to detect the efficiency of the nitrogen (N2) fixation in clover-grass leys in northern climate conditions, we studied how soil compaction affects growth and N2 -fixation of white clover (Trifolium repens L.) under contrasting growth conditions. A pot experiment was carried out under controlled climatic conditions in the phytotron at Holt (Tromsø). Sandy soil was compacted to two levels, 60% and 85% of the standard degree of compactness (SDC). Four seedlings of white clover plants or timothy (Phleum pratense L.) were carefully planted in each pot. Timothy was used as reference plant. The plants were placed at 15 ºC for twelve weeks and subjected to 18 or 24 h daylight. The 15N isotope dilution method was used to assess N2 -fixation. Results suggest that 24 h daylight increased white clover biomass production as compared to 18 h daylight and favoured leaf and stolon production significantly more at 85% of SDC than at 60% of SDC. However, for white clover plants grown at 18 h day length higher compactness reduced the root development. On average, white clover derived 44-58% of its total N from N2 -fixation grown at 60% of SDC and 46-47% at 85% of SDC, regardless of light conditions. The N2 -fixation was somewhat higher at 24 h day length only under the low soil compaction level.

To document

Abstract

As a primary industry, agriculture is directly dependent on natural conditions and therefore potentially vulnerable to the consequences of climate change. In Norway and Northern Norway in particular, the future climatic changes are expected to be overall positive. Still, the consequences for agriculture are not straightforward, but dependent on the interaction between different weather and biological elements, as well as political, economic and social conditions. In this interdisciplinary study we have assessed biological and agronomic effects of climate change, and their interaction with political, economic and social factors, to identify farmers' vulnerability and adaptive capacity to climate change. The assessments are based on downscaled climate change scenarios and interviews with local farmers in the three northernmost counties in Northern Norway (latitude 65.5° to 70°). The study shows that the farmers to a degree are vulnerable to a changing climate, not mainly because of the direct effects of changing growing conditions, but because these changes are an added factor to an already tenuous situation created by Norwegian agricultural policy and socio-economic development in general. We have found that farmers are highly adaptive, to both changing growing conditions and changing agricultural policies. However, changes in policy are currently a greater challenge to farmers than climate change, and such changes are therefore a more salient driver of vulnerability.

To document

Abstract

Background and aims: White clover (Trifolium repens) is an important component of sustainable livestock systems around the world. Its exploitation for agriculture in the northern, marginal areas, is, however, currently limited by the lack of cultivars that combine persistence and high production potential. The aims are to investigate whether it is feasible to create breeding material of white clover for these areas by combining winter hardiness of northerly populations with good yielding ability of more southerly cultivars. Methods: A total of 166 crosses of 14 different parental combinations between winter-hardy, low-yielding populations of northern origin and high-yielding commercial cultivars of more southerly origin were tested under field conditions in Iceland and Norway and the parental combinations were compared in Norway. Spaced plants were transplanted into a smooth meadow grass (Poa pratensis) sward. Dry matter yield was estimated for 2 years after planting in Norway and morphological characters associated with yielding capacity were measured at both sites. Key results: The results showed that southerly cultivars had larger leaves and higher yielding potential than northern types but suffered more winter damage. Significant variation was found between full-sib families within the different parental combinations for all morphological characteristics measured in all three trials. However, it was difficult to detect any consistens morphological patterns between progeny groups across trial sites. No significant correlations were found between leaflet area and survival. Conclusions: The present study has confirmed that it should be possible to simultaneously select for good winter survival and larger leaves and, hence, higher yielding ability under marginal conditions.