Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Changes in grassland management lead to alterations in community structure and can facilitate rapid expansion of both non-native and native invaders. Light availability differs greatly depending on grassland density, and competition for light is an important component of species dynamics. In this study, we examined if light reduction is an effective method to suppress a native invader in pre-alpine meadows of low to moderate land-use intensity. Our study focused on the effects of shading and other site conditions on vegetative and generative growth of Jacobaea aquatica, a poisonous hemicryptophyte regionally spreading in C Europe. We hypothesized that negative shade effects occur in addition to suppression by high grassland productivity, moist climate and less intense management. Furthermore, we postulated that shading affects vegetative growth more than reproduction. To understand the effects of shading we conducted a greenhouse experiment with plants grown under different shading nets. These results were compared to data gathered from 20 field sites that represented a distinct gradient in grassland management and shading. Overall, performance of generative J. aquatica plants was reduced by shading in the greenhouse, while density of vegetative plants was reduced in the field. In the greenhouse, plants affected by shading had significantly fewer flower heads and slightly smaller rosettes. Under field conditions, shading effects occurred together with additional environmental factors, while density of vegetative plants was significantly reduced by shading. Our data show that while realising high shading effects in the field is hard to accomplish, light reduction still has an influence on plant performance and population density, and could therefore be used to suppress the invasive native J. aquatica. In low to moderate intensity grasslands, suppression can be achieved by delaying the first mowing, thus enhancing shading. We conclude that manipulating environmental filters to increase resource competition is recommended as an alternative management tool to control the abundance of invasive native plants in grassland.

To document

Abstract

The success of Phasmarhabditis hermaphrodita (Schneider) Andrássy (Rhabditida: Rhabditidae) as a biological control agent of molluscs has led to a worldwide interest in phasmarhabditids. However, scant information is available on the lifecycle development of species within the genus. In the current study, the development of P. hermaphrodita, Phasmarhabditis papillosa, Phasmarhabditis bohemica and Phasmarhabditis kenyaensis were studied using ex vivo cultures, in order to improve our understanding of their biology. Infective juveniles (IJs) of each species were added to 1 g of defrosted homogenized slug cadavers of Deroceras invadens and the development monitored after inoculated IJ recovery, over a period of eight–ten days. The results demonstrated that P. bohemica had the shortest development cycle and that it was able to produce first-generation IJs after eight days, while P. hermaphrodita, P. papillosa and P. kenyaensis took ten days to form a new cohort of IJs. However, from the perspective of mass rearing, P. hermaphrodita has an advantage over the other species in that it is capable of forming self-fertilizing hermaphrodites, whereas both males and females are required for the reproduction of P. papillosa, P. bohemica and P. kenyaensis. The results of the study contribute to the knowledge of the biology of the genus and will help to establish the in vitro liquid cultures of different species of the genus.