Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

This trial aimed to assess the growth performance of trout (Oncorhynchus mykiss) fed novel formulations, evaluate fish welfare status, and determine flesh quality as part of the evaluation of sustainable feeds. A control diet containing fish meal and soy products (CTRL) was compared to: a diet with processed animal proteins (PAP); a diet without PAP (NoPAP); a PAP diet lower in protein (PAP−); and a NoPAP diet higher in protein (NoPAP+). Groups of 50 fish, weighing 58.84 ± 1.39 g (IBW), were allocated to 20 tanks and fed with formulated diets ad libitum over 91 days. Better growth performance was observed after the experiment in fish fed the NoPAP+ diet when compared to other diets. Protein retention was higher in CTRL diets than in PAP and PAP− diets. Protein and phosphorous digestibility were lower in fish fed PAP− diet. Diets did not influence the texture analysis. However, sensory analysis revealed higher acceptance for fish fed the NoPAP diet when compared to the PAP diet. Lysozyme was higher in the NoPAP diet than in other treatments. In addition, long-term predictions using FEEDNETICSTM software suggest some of these alternative formulations may be economically sustainable. Overall, these results support the hypothesis that the new formulations are viable options for trout farming.

Abstract

Key message We studied size distributions of decay-affected Norway spruce trees using cut-to-length harvester data. The harvester data comprised tree-level decay and decay severity recordings from 101 final felling stands, which enabled to analyze relationships between size distributions of all and decay-affected trees. Distribution matching technique was used to transfer the size distribution of all trees into the diameter at breast height (DBH) distribution of decay-affected trees. Context Stem decay of Norway spruce (Picea abies [L.] Karst.) results in large economic losses in timber production in the northern hemisphere. Forest management planning typically requires information on tree size distributions. However, size distributions of decay-affected trees generally remain unknown impeding decision-making in forest management planning. Aims Our aim was to analyze and model relationships between size distributions of all and decay-affected Norway spruce trees at the level of forest stands. Methods Cut-to-length harvester data of 93,456 trees were collected from 101 final felling stands in Norway. For each Norway spruce tree (94% of trees), the presence and severity of stem decay (incipient and advanced) were recorded. The stand-level size distributions (diameter at breast height, DBH; height, H) of all and decay-affected trees were described using the Weibull distribution. We proposed distribution matching (DM) models that transform either the DBH or H distribution of all trees into DBH distributions of decay-affected trees. We compared the predictive performance of DMs with a null-model that refers to a global Weibull distribution estimated based on DBHs of all harvested decay-affected trees. Results The harvester data showed that an average-sized decay-affected tree is larger and taller compared with an average-sized tree in a forest stand, while trees with advanced decay were generally shorter and thinner compared with trees having incipient decay. DBH distributions of decay-affected trees can be matched with smaller error index (EI) values using DBH (EI = 0.14) than H distributions (EI = 0.31). DM clearly outperformed the null model that resulted in an EI of 0.32. Conclusions The harvester data analysis showed a relationship between size distributions of all and decay-affected trees that can be explained by the spread biology of decay fungi and modeled using the DM technique. Keywords Root and butt rot, Heterobasidion spp., Armillaria spp., Cut-to-length harvester, Forest management and planning

To document

Abstract

Renewable energy in the form of biogas can be produced by anaerobic digestion (AD) of animal manure. However, there is still a lack of knowledge on the long-term effects of AD-treated manure on soil characteristics and crop productivity, compared with untreated manure. A field experiment was established in a perennial grass-clover ley in 2011 to study the effects on important soil and crop characteristics when the slurry from a herd of organically managed dairy cows is anaerobically digested. While the rate of manure application affected soil concentrations of extractable nutrients and pH, these variables were unaffected by AD. Soil organic matter (SOM) concentrations decreased in all plots and faster on the plots with high intrinsic SOM. The decrease was similar with application of untreated (non-digested) slurry (US) and anaerobically digested slurry (ADS), and it was not affected by application rates. The general decline may be explained by the initial high SOM content, the long-term effect of drainage, and higher temperatures with climatic change. US and ADS gave similar yields of grass-clover ley (2 cuts/year) and green fodder, on average 0.79 and 0.40 kg DM m−2, respectively. Clover yield was similar in manured treatments and the non-fertilized control. With respect to crop yields and chemical soil characteristics, long-term (10 years) effects of AD in an organic dairy cow farming system seem to be minor. The benefits of extracting energy from the slurry did not compromise grassland productivity or soil quality in the long term.

To document

Abstract

This study quantifies golf course pesticide risk in five regions across the US (Florida, East Texas, Northwest, Midwest, and Northeast) and three countries in Europe (UK, Denmark, and Norway) with the objective of determining how pesticide risk on golf courses varied as a function of climate, regulatory environment, and facility-level economic factors. The hazard quotient model was used to estimate acute pesticide risk to mammals specifically. Data from 68 golf courses are included in the study, with a minimum of at least five golf courses in each region. Though the dataset is small, it is representative of the population at confidence level of 75 % with a 15 % margin of error. Pesticide risk appeared to be similar across US regions with varied climates, and significantly lower in the UK, and lowest in Norway and Denmark. In the Southern US (East Texas and Florida), greens contribute most to total pesticide risk while in nearly all other regions fairways make the greatest contribution to overall pesticide risk. The relationship between facility-level economic factors such as maintenance budget was limited in most regions of the study, except in the Northern US (Midwest, Northwest, and Northeast) where maintenance and pesticide budget correlated to pesticide risk and use intensity. However, there was a strong relationship between regulatory environment and pesticide risk across all regions. Pesticide risk was significantly lower in Norway, Denmark, and the UK, where twenty or fewer active ingredients were available to golf course superintendents, than it was in US where depending on the state between 200 and 250 pesticide active ingredients were registered for use on golf courses.