Johan Johansen

Head of Department/Head of Research

(+47) 957 32 132
johan.johansen@nibio.no

Place
Bodø

Visiting address
Torggården, Kudalsveien 6, NO-8027 Bodø

To document

Abstract

The growth of the aquaculture industry requires more sustainable and circular economy-driven aquafeed formulas. Thus, the goal of the present study was to assess in farmed gilthead sea bream (Sparus aurata L.) how different combinations of novel and conventional fish feed ingredients supported proper animal performance in terms of growth and physiological biomarkers of blood/liver/head kidney. A 77-day feeding trial was conducted with three experimental diets (PAP, with terrestrial processed animal protein from animal by-products; NOPAP, without processed animal protein from terrestrial animal by-products; MIX, a combination of alternative ingredients of PAP and NOPAP diets) and a commercial-type formulation (CTRL), and their effects on growth performance and markers of endocrine growth regulation, lipid metabolism, antioxidant defense and inflammatory condition were assessed at circulatory and tissue level (liver, head kidney). Growth performance was similar among all dietary treatments. However, fish fed the PAP diet displayed a lower feed conversion and protein efficiency, with intermediate values in MIX-fed fish. Such gradual variation in growth performance was supported by different biomarker signatures that delineated a lower risk of oxidation and inflammatory condition in NOPAP fish, in concurrence with an enhanced hepatic lipogenesis that did not represent a risk of lipoid liver degeneration.

To document

Abstract

This trial aimed to assess the growth performance of trout (Oncorhynchus mykiss) fed novel formulations, evaluate fish welfare status, and determine flesh quality as part of the evaluation of sustainable feeds. A control diet containing fish meal and soy products (CTRL) was compared to: a diet with processed animal proteins (PAP); a diet without PAP (NoPAP); a PAP diet lower in protein (PAP−); and a NoPAP diet higher in protein (NoPAP+). Groups of 50 fish, weighing 58.84 ± 1.39 g (IBW), were allocated to 20 tanks and fed with formulated diets ad libitum over 91 days. Better growth performance was observed after the experiment in fish fed the NoPAP+ diet when compared to other diets. Protein retention was higher in CTRL diets than in PAP and PAP− diets. Protein and phosphorous digestibility were lower in fish fed PAP− diet. Diets did not influence the texture analysis. However, sensory analysis revealed higher acceptance for fish fed the NoPAP diet when compared to the PAP diet. Lysozyme was higher in the NoPAP diet than in other treatments. In addition, long-term predictions using FEEDNETICSTM software suggest some of these alternative formulations may be economically sustainable. Overall, these results support the hypothesis that the new formulations are viable options for trout farming.

To document

Abstract

There is a stable growth in aquaculture production to avoid seafood scarcity. The usage of eco-friendly feed additives is not only associated with aquatic animal health but also reduces the risk of deleterious effects to the environment and consumers. Aquaculture researchers are seeking dietary solutions to improve the growth performance and yield of target organisms. A wide range of naturally derived compounds such as probiotics, prebiotics, synbiotics, complex carbohydrates, nutritional factors, herbs, hormones, vitamins, and cytokines was utilized as immunostimulants in aquaculture. The use of polysaccharides derived from natural resources, such as alginate, agar, laminarin, carrageenan, fucoidan, chitin, and chitosan, as supplementary feed in aquaculture species has been reported. Polysaccharides are prebiotic substances which are enhancing the immunity, disease resistance and growth of aquatic animals. Further, chitin (CT), chitosan (CTS) and chitooligosaccharides (COS) were recognized for their biodegradable properties and unique biological functions. The dietary effects of CT, CTS and COS at different inclusion levels on growth performance, immune response and gut microbiota in aquaculture species has been reviewed. The safety regulations, challenges and future outlooks of CT, CTS and COS in aquatic animals have been discussed in this review.